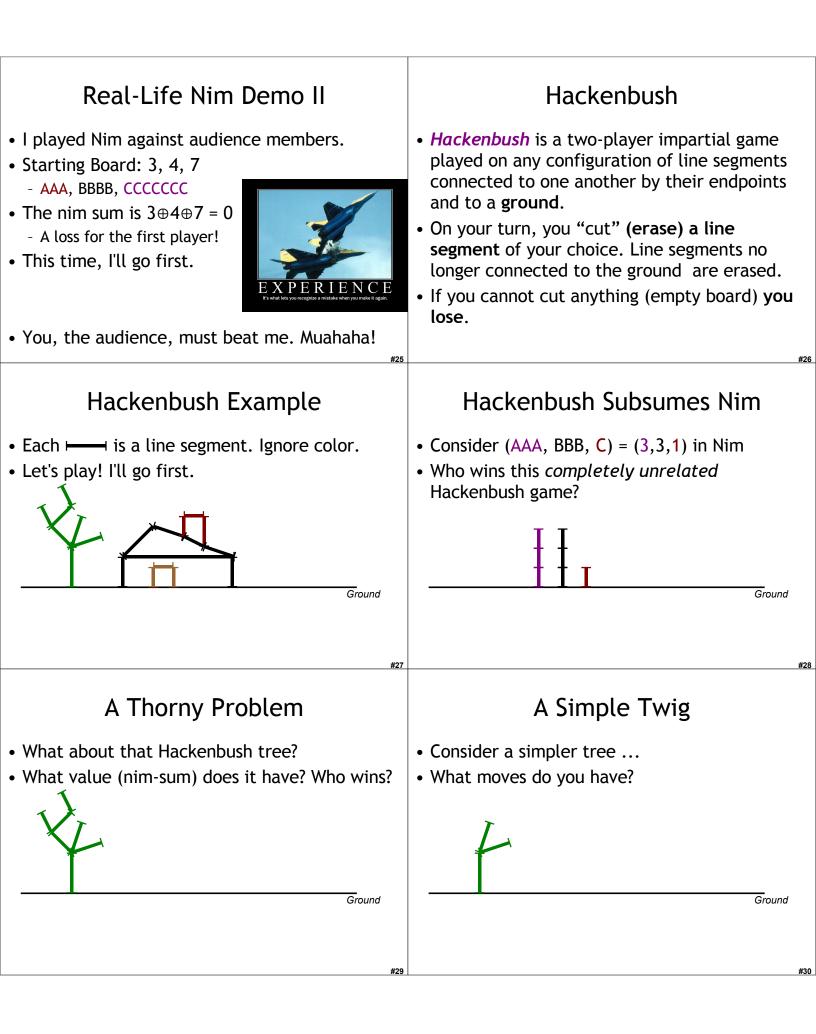
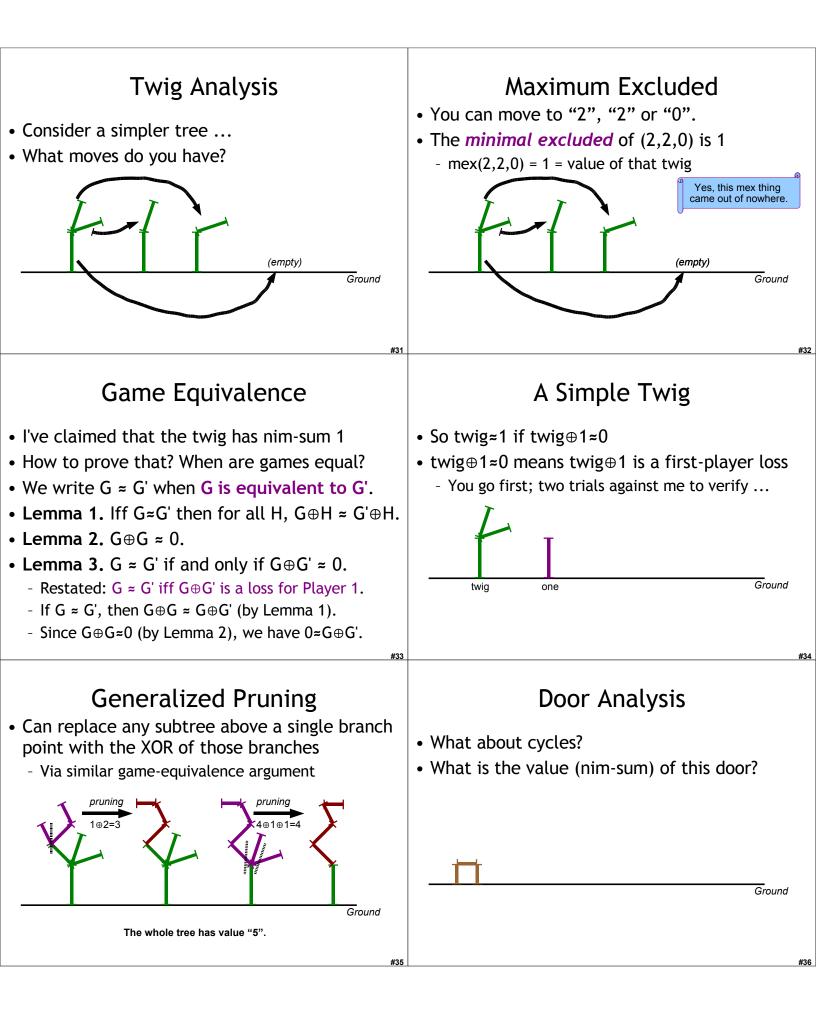
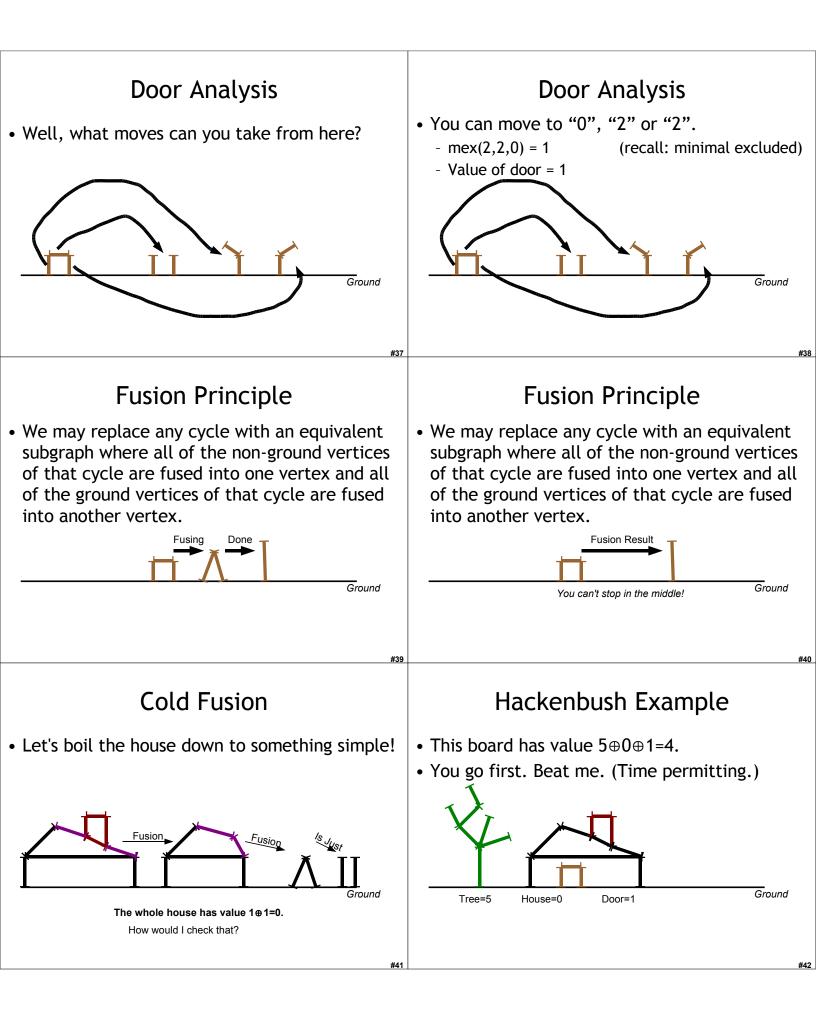


 Still Going! A deterministic strategy for X, a deterministic strategy for O, and a deterministic game lead deterministically to a single game instance Example: if you always play tic-tac-toe by going in the uppermost, leftmost available square, and I always play it by going in the lowermost, rightmost available square, every time we play we'll have the same result. Now we can study various strategies and their outcomes! 	 Winning Strategies A winning strategy for X on a game G is a strategy S1 for X on G such that, for all strategies S2 for O on G, the result of playing G with S1 and S2 is a win for X. Does X have a winning strategy for Tic-Toe? Does O have a winning strategy for Tic-Toe? Fact: If the first player in a turn-based deterministic game has a winning strategy, the second player cannot have a winning strategy. Why?
 Impartial Games An impartial game has (1) allowable moves that depend only on the position and not on which player is currently moving, and (2) symmetric win conditions (payoffs). Only difference between Player1 and Player2 is that Player1 goes first. This is not the case for Chess: White cannot move Black's pieces So I need to know which turn it is to categorize the allowable moves. A game that is not impartial is partisan. 	 Nim is a two-player game in which players take turns removing objects from distinct heaps. Non-cooperative, symmetric, sequential, perfect information, finite, impartial One each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap. If you cannot take an object, you lose. Similar to Chinese game "Jianshizi" ("picking stones"); European refs in 16th century
 Example Nim Start with heaps of 3, 4 and 5 objects: AAA, BBBB, CCCCC Here's a game: AAA BBBB CCCCC I take 2 from A A BBBB CCCCC You take 3 from C A BBBB CC I take 1 from B A BBB CC I take all of A BB CC You take 1 from C BB C I take 1 from B BB C I take 1 from B BB C I take all of A BB C You take all of C BB C You take all of C BC You take all of B I take all of B I take all of B 	 File File For the second state of the s

 The Rats of NIM How did I win every time? Did I win every time? If not, pick on me mercilessly. Nim can be mathematically solved for any number of initial heaps and objects. There is an easy way to determine which player will win and what winning moves are available. Essentially, a way to evaluate a board and determine its payoff / goodness / winning-ness. 	 Analysis You lose on the empty board. Working backwards, you also lose on two identical singleton heaps (A, B) You take one, I take the other, you're left with the empty board. By induction, you lose on two identical heaps of any size (Aⁿ, Bⁿ) You take x from heap A. I also take x from heap B, reducing it to a smaller instance of "two identical heaps".
#13	#20
Analysis II	Analysis III
 On the other hand, you win on a board with a singleton heap (C). You take C, leaving me with the empty board. You win with a single heap of any size (Cⁿ). What if we add these insights together? (AA, BB) is a loss for the current player (C) is a win for the current player (AA, BB, C) is what? 	 (AA, BB, C) is a win for the current player. You take C, leaving me with (AA, BB) - which is just as bad as leaving me with the empty board. When you take a turn, it becomes my turn So leaving me with a board that would be a loss for you, if it were your turn becomes a win for you! (AAA, BBB, C) - also a win for Player1. (AAAA, BBBB, CCCC) - also a win for Player1.
Generalize	The Trick!
 We want a way of evaluating nim heaps to see who is going to win (if you play optimally). Intuitively Two equal subparts cancel each other out (AA, BB) is the same as the empty board (,) Win plus Loss is Win (CC) is a win for me, (A,B) is a loss for me, (A,B,CC) is a win for me. What do we know that's kind of like addition but cancels out equal numbers? #23 	 Exclusive Or XOR, ⊕, vector addition over GF(2), or nim-sum If the XOR of all of the heaps is 0, you lose! empty board = 0 = lose (AAA,BBB) = 3⊕3 = 0 = lose Otherwise, goal is to leave opponent with a board that XORs to zero (AAA,BBB,C) = 3⊕3⊕1 = 1, so move to (AAA,BBB) or (AA,BBB,C) or (AAA,BB,C)







 Why Do We Care? about Nim and Hackenbush? Theorem (Sprague-Grundy, '35-'39). Every impartial game is equivalent to a nim sum. Proof: By structural induction on the set (tree) representing the game. Proof not shown here Proof sketch can be found at end of slide set
Questions?
HEY, YOU WANNA PLAY THAT? GAME?
Sprague-Grundy Proof
 Let G' = {N₁, N₂,, N_k}. Then G ≈ G'. Why? Player 1 makes a move i in G to G_i ≈ N_i. Then Player 2 can make a move equivalent to N_i in G'. So the resulting game is a first-player loss, so by Lemma 3, G ≈ G'. To show G≈m, we'll show G+m is a first-player loss. We'll give an explicit strategy for the second

Sprague-Grundy Proof II

- To Show: P2 Wins in G'+m
- Suppose P1 moves in the m subpart to some option q with q<m. But since m was the minimal excluded number, P2 can move in G' to q as well.
- Suppose instead P1 moves in the G' subpart to the option N_i.
 - If $N_i < m$ then P2 moves in the m subpart from m to N_i .
 - If N_i > m then P2, using the IH, moves to m in the G' subpart (which has been reduced to the smaller game N_i by P1's move). There must be such a move since N_i is the mex of options in N_i. If m<N_i were not a suboption, the mex would be m!
- Therefore, G'+m is a first-player loss. By Lemma 1, G+m is a firstplayer loss. So G≈m. QED.