
Semi-Secure Semi-Secure
WebsitesWebsites

&&
Modeling Modeling

ComputationComputation
#2

One-Slide Summary
• Users often authenticate themselves by providing

passwords. We store and compare hashes of passwords,
where a hash is a secure one-way function. A cookie is a
bit of state associated with a webpage that is stored on
the client.

• The Turing machine is a fundamental model of
computation. It models input, output, processing and
memory. A Turing machine has a finite state machine
controller as well as an infinite tape. At each step it
reads the current tape symbol, writes a new tape
symbol, moves the tape head left or right one square,
and moves to a new state in the finite state machine
controller. Turing machines are universal: they are just
as powerful as Scheme, Python, C, or Java.

How do you authenticate?
• Something you know

– Password

• Something you have
– Physical key (email account?, transparency?)

• Something you are
– Biometrics (voiceprint, fingerprint, etc.)

Serious authentication requires at least 2
kinds

First Try: Encrypt Passwords

encryptK (“schemer”)ben

PasswordUserID

encryptK (“Lx.Ly.x”)weimer

encryptK (“fido”)alyssa

Problem if K isn’t so secret: decryptK (encryptK (P)) = P

• Instead of storing password, store password
encrypted with secret K.

• When user logs in, encrypt entered password and
compare to stored encrypted password.

Hashing

9

8

7

6

5

4

3

2

1

0

“neanderthal”“dog”

H (string s) = (s[0] – ‘a’) mod 10

“horse”

Many-to-one: maps a
large number of values
to a small number of
hash values
Even distribution: for
typical data sets,
probability of (H(x) = n)
= 1/N where N is the
number of hash values
and n = 0..N – 1.
Efficient: H(x) is easy to
compute.

“bat”

Cryptographic Hash Functions

One-way
Given h, it is hard to find x
such that H(x) = h.

Collision resistance

Given x, it is hard to find y x
such that H(y) = H(x).

Example One-Way Function

Input: two 100 digit numbers, x and y
Output: the middle 100 digits of x * y

Given x and y, it is easy to calculate
f (x, y) = select middle 100 digits (x * y)

Given f (x, y) hard to find x and y.

A Better Hash Function?

• H(x) = encryptx (0)

• Weak collision resistance?
– Given x, it should be hard to find y x

such that H(y) = H(x).
– Yes – encryption is one-to-one. (There is

no such y.)
• A good hash function?

– No, its output is as big as the message!

Actual Hashing Algorithms
• Based on cipher block chaining

– Start by encrypting 0 with the first block
– Use the next block to encrypt the previous

block

• SHA [NIST95] – 512 bit blocks, 160-bit hash
• MD5 [Rivest92] – 512 bit blocks, produces

128-bit hash
– This is what we use in HoosHungry
– It has been broken!

Hashed Passwords

md5 (“schemer”)ben

PasswordUserID

md5 (“Lx.Ly.x”)weimer

md5 (“fido”)alyssa

Dictionary Attacks

• Try a list of common passwords
– All 1-4 letter words
– List of common (dog) names
– Words from dictionary
– Phone numbers, license plates
– All of the above in reverse

• Simple dictionary attacks retrieve most
user-selected passwords

• Precompute H(x) for all dictionary
entries

(at least) 86% of users are
dumb and dumber

14%Other (possibly good passwords)

15%Words in dictionaries or names

18%Six lowercase letters

21%Five same-case letters

14%Four alphabetic letters

14%Three characters

2%Two characters

0.5%Single ASCII character

(Morris/Thompson 79)

Authenticating Users

• User proves they are a worthwhile person
by having a legitimate email address
– Not everyone who has an email address is

worthwhile
– Its not too hard to snoop (or intercept)

someone’s email

• But, provides much better authenticating
than just the honor system

Liberal Arts Trivia: Literature

• This slave and storyteller in Ancient
Greece is credited with The Fox and the
Grapes, The Tortoise and the Hare, and
The Boy Who Cried Wolf. His work
inspired the French fabulist Jean de la
Fontaine, a widely-read 17th century
poet.

Using Cookies
• A cookie is website state stored on the

client, not on a backend database.
• Cookie must be sent before any HTML is

sent (util.printHeader does this)
• Be careful how you use cookies – anyone

can generate any data they want in a
cookie
– Make sure they can’t be tampered with: use

md5 hash with secret to authenticate
– Don’t reuse cookies - easy to intercept them

(or steal them from disks): use a counter than
changes every time a cookie is used

Hungry vs. Cookies
def checkCookie ():
 try:
 if 'HTTP_COOKIE' in os.environ:
 cookies = os.environ['HTTP_COOKIE']
 c = Cookie.SimpleCookie(cookies)
 user = c['user'].value
 auth = c['authenticator'].value
 count = users.userTable.getCookieCount (user)
 ctest = md5crypt.encrypt (constants.ServerSecret + str(count) + user, \
 str(count))
 if True:
 users.userTable.setCurrentUser (user)
 return True
 else:
 users.userTable.setCurrentUser (False)
 return False
 else:
 return False
 except:
 return False

ctest == auth:

Paging
UVA

NetBadge!

Problems Left
• The database password is visible in

plaintext in the Python code
– No way around this (with UVa mysql server)
– Anyone who can read UVa filesystem can

access your database

• The password is transmitted unencrypted
over the Internet (later)

• Proving you can read an email account is
not good enough to authenticate for
important applications

How convincing was our
Halting Problem proof?

def contradict_halts(x):
if halts?(contradict_halts):

loop_forever()
else:

return True
contradicts_halts cannot exist. Everything we
used to make it except halts? does exist,
therefore halts? cannot exist.

This “proof” assumes Python exists and is consistent!

PyCharming

Is PyCharm a proof that Python exists?

PyCharm

Is PyCharm a proof that PyCharm exists?

def make_huge(n):
If (n == 0): return []
else: return make_huge(n-1) + \

make_huge(n-1)
make_huge(10000)

No!
Python/Java/etc. all fail to evaluate some program!

Solutions
• Option 1: Prove “Python” does exist

– Show that we could implement all the
evaluation rules (if we had “Java”, our Mini
Python interpreter would be a good start, but
we don’t have “Java”)

• Option 2: Find a simpler computing model
– Define it precisely
– Show that “contradict_halts” can be defined

in this model

Modeling Computation

• For a more convincing proof, we need a
more precise (but simple) model of what
a computer can do

• Another reason we need a model:
Does complexity really make sense
without this? (how do we know what a
“step” is? are they the same for all
computers?)

What is a model?

“Computers” before WWII Modeling Computers
• Input

– Without it, we can’t describe a problem

• Output
– Without it, we can’t get an answer

• Processing
– Need some way of getting from the input to

the output

• Memory
– Need to keep track of what we are doing

Modeling Input

Engelbart’s mouse and keypad

Punch Cards

Altair BASIC Paper Tape, 1976

Turing’s “Computer”

“Computing is normally done
by writing certain symbols on
paper. We may suppose this
paper is divided into squares
like a child’s arithmetic
book.”

Alan Turing,
On computable numbers,
with an application to the
Entscheidungsproblem, 1936

Simplest Input

• Non-interactive: like punch cards and
paper tape

• One-dimensional: just a single tape of
values, pointer to one square on tape

0 0 1 1 0 0 1 0 0 0

How long should the tape be?

Infinitely long! We are modeling a computer, not
building one. Our model should not have silly
practical limitations (like a real computer does).

Modeling Output

• Blinking lights are
cool, but hard to
model

• Output is what is
written on the
tape at the end
of a computation

Connection Machine CM-5, 1993

Liberal Arts Trivia: Sports

• This United Kingdom football sport dates back
to a game played by ancient Greeks (called
episkyros or επίσκυρος). The Cornish called it
“hurling to goals” dating back to the bronze
age. It was popularized by the eponymous
board school after 1750. The object of the
game is to carry the ball beyond the
opponent's touch line (called a Try) or kick it
between the goal posts. The 15-player team is
allowed only “modest” padding.

Liberal Arts Trivia: Geography

• This Nordic country can claim Celsius
(temperature), Nobel (dynamite), and
Ericsson (telecom), as well as ABBA,
Uppsala University, and Stockholm. It is the
third-largest music exporter in the world,
with over 800 million dollars revenue in
2007 alone, surpassed only by the US and
the UK.

Modeling Processing (Brains)

•Rules for steps
•Remember a

little

“For the present I
shall only say that
the justification lies
in the fact that the
human memory is
necessarily limited.”

Alan Turing

Modeling Processing
• Evaluation Rules

– Given an input on our tape, how do we
evaluate to produce the output

• What do we need:
– Read what is on the tape at the current

square
– Move the tape one square in either direction
– Write into the current tape square

0 0 1 1 0 0 1 0 0 0

Is that enough to model a computer?

Modeling Processing

• Read, write and move is not enough
• We also need to keep track of what we

are doing:
– How do we know whether to read, write or

move at each step?
– How do we know when we’re done?

• What do we need for this?

Finite State Machines

1Start 2

HALT

1
0

1

#

0

Hmmm…maybe we don’t need
those infinite tapes after all?

1Start 2

HALT

(

not a
paren

)

#

not a
paren

)

ERROR

Hmmm…maybe we don’t need
those infinite tapes after all?

1Start 2

HALT

(

not a
paren

)

#

not a
paren

)

ERROR

What if the
next input symbol
is (in state 2?

How many states do we need?

1Start 2

HALT

(

not a
paren

)

#

not a
paren

)

ERROR

3

not a
paren(

)

How many states do we need?

1Start 2

HALT

(

not a
paren

)

#

not a
paren

)

ERROR

3

not a
paren(

)

4
(

)

not a
paren

(

Finite State Machine

• There are lots of things we can’t
compute with only a finite number of
states

• Solutions:
– Infinite State Machine

•Hard to describe and draw

– Add an infinite tape to the Finite State
Machine
•We'll do this instead.

Turing’s Explanation

“We have said that the
computable numbers are
those whose decimals are
calculable by finite
means. ... For the
present I shall only say
that the justification lies
in the fact that the
human memory is
necessarily limited.”

FSM + Infinite Tape
• Start:

– FSM in Start State
– Input on Infinite Tape
– Pointer to start of input

• Step:
– Read one input symbol from tape
– Write symbol on tape, and move L or R one

square
– Follow transition rule from current state

• Finish:
– Transition to halt state

Turing Machine

1

Start

2

Input: #
Write: #
Move:

1 0 1 1 0 1 1... ...1 0 1 1 0 1 1 1

Input: 1
Write: 0
Move:

Input: 1
Write: 1
Move:

Input: 0
Write: 0
Move: 3

Input: 0
Write: #
Move:

Why is
this machine
not complete?

Matching Parentheses
• Find the leftmost)

– If you don’t find one, the parentheses match,
write a 1 at the tape head and halt.

• Replace it with an X
• Look left for the first (

– If you find it, replace it with an X (they
matched)

– If you don’t find it, the parentheses didn’t
match – end write a 0 at the tape head and
halt

Matching Parentheses

1:
look
for)

Start

HALT

), X, L

2: look
for (

X, X, R

X, X, L

(, X, R

#, 0, ##, 1, #

(, (, R

Matching Parentheses

1:
look
for)

Start

HALT

), X, L

2: look
for (

X, X, R

X, X, L

(, X, R

#, 0, ##, 1, #

(, (, R

Will this report the
correct result for (()?

Matching Parentheses

1Start

HALT

), X, L

2: look
for (

(, (, R

(, X, R

#, 0, ##, 1, #

X, X, L

X, X, R

#, #, L

3: look
for (X, X, L

#, 1, #

(, 0, #

Turing Machine
z z z z z z z z z z z z z z z zzzz z z z

TuringMachine ::= < Alphabet, Tape, FSM >
Alphabet ::= { Symbol* }
Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [Square*]
RightSide ::= [Square*]

Everything to left of LeftSide is #.
Everything to right of RightSide is #.

1

Start

HAL
T

), X, L

2:
look
for (

#, 1, -

), #, R

(, #, L

(, X, R

#, 0, -

Finite State Machine

How well does this model your computer?

Infinite Tape

Homework

• Exam 2 Out, Due Thursday

