
Types of Types

1

One-Slide Summary

• In lazy evaluation, expressions are not evaluated

until their values are needed.

• A type is a (possibly infinite) set of values.

• Each type supports a set of valid operations.

• Types can be latent or manifest, static or dynamic,

strong or weak.

• We can change the MiniPython interpreter to

support manifest (program visible) types.

2

Outline

• Administration

• Lazy Evaluation Recap

• Types

• MiniPython with Manifest Types

3

Problem Set 8

• Understand and modify a dynamic web application

• Already posted

• Team requests are due Thursday, November 15th

• (email Wes before midnight)

• Descriptions are due Tuesday, November 20th

 4

Problem Set 9

Lazy Evaluation Recap

• Don’t evaluate expressions until their value

is really needed

• We might save work this way, since

sometimes we don’t need the value of an

expression

• We might change the meaning of some

expressions, since the order of evaluation

matters

• Change the Evaluation rule for Application

• Use thunks to delay evaluations

5

Lazy Assignment
public static Object evalAssign(ArrayList<Object> exp,

 Environment env) {

 String id = (String) exp.get(1); //Name of Variable

 Object res = (Object) meval(exp.get(2),env); //Evaluate

 env.addVariable(id, res); //Add to environment

 return null; //No return value for assignments

}

6

public static Object lazyEvalAssign(ArrayList<Object> exp,

 Environment env) {

 String id = (String) exp.get(1); //Name of Variable

 Object res = (Object) new Thunk(exp.get(2),env); //Skip Eval

 env.addVariable(id, res); //Add to environment

 return null; //No return value for assignments

}

Liberal Arts Trivia:
Cognitive Science
• This philosophy of mind dominated for the

first half of the 20th century. It developed as a
reaction to the inadequacies of
introspectionism. In it, all things which
organisms do – including acting, thinking
and feeling – should be regarded as actions
or reactions, usually to the environment. It
holds that there are no philosophical
differences between publicly observable
processes (actions) and privately observable
processes (thinking and feeling).

• Bonus: B.F. Who?

7

Liberal Arts Trivia:
Civil Rights
• The landmark 1967 Supreme Court case

Loving v. Virginia declared Virginia's anti-

miscegenation statue, the “Racial Integrity

Act of 1924”, unconstitutional. This

effectively ended laws preventing what?

8

Types

9

Type Review

• A Type is a (possibly infinite) set of values

• You can do some things with some types,
but not others

• Each Type has associated valid operations

5 * 2 //Evaluates to an int

5 * “hi” //Evaluates to what? hihihihihi? 0?

• Why are types useful? They help identify
errors and define correct behavior. 10

Video Break

• Java contains statically checked, manifest types.

• Python contains dynamically checked, latent types.

• However, both are strongly typed. Permissible

operations on types are well-defined and strongly

enforced.

• What can happen if we our language fails to follow well-

defined or intuitive type rules?

11

What do we need to do to change

our MiniPython interpreter to

provide manifest types?

12

Truthiness!
13

Liberal Arts Trivia:
Media Studies
• This technique in film editing combines a

series of short shots into a sequence of

condensed narrative. It is usually used to

advance the story as a whole and often to

suggest the passage of time.

14

Liberal Arts Trivia:
European History
• This relatively slender, sharply pointed sword

was popular in Europe in the 16th and 17th

centuries. It is mainly used for thrusting

attacks. It is characterized by a complex hilt,

which protects the hand wielding it. The

etymology may derive the word from the

Greek ραπίζειν "to strike."

15

Liberal Arts Trivia:
United Kingdom History
• This United Kingdom Tory prime minister

was most famous for his military work during

the Peninsular Campaign and the

Napoleonic Wars. He was nicknamed the

“Iron Duke” because of the iron shutters he

had fixed to his windows to stop pro-reform

mobs from breaking them – as an MP he

was opposed to reform. It is unclear whether

the well-known beef tenderloin, pate and puff

pastry dish is named after him.

16

17

Types of Types

18

Manifest Types

Need to change the grammar rules to include

types in definitions and parameter lists:

Old Grammar:
DefStmt := def Name (ArgList) : Sequence

ArgList := ε | Arg Arglist

Arg := Name

19

def compare(ascending, x, y):
 if(ascending):
 return x < y
 else:
 return y < x

Manifest Types

Need to change the grammar rules to include

types in definitions and parameter lists:

New Grammar:
DefStmt := def Name (ArgList) : Type :: Sequence

ArgList := ε | Arg Arglist

Arg := Name : Type

But what is “Type?”

20

def compare(ascending : Type, x : Type, y : Type) : Type ::
 if(ascending):
 return x < y
 else:
 return y < x

Types in MiniPython

Type ::= PrimitiveType

 | ListType

 | ProcedureType

PrimitiveType ::= int | boolean

ListType ::= Type ListType | []

ProcedureType ::= (ListType -> Type)

But what does all this mean?
21

Examples

9

>>> int

9 + 9

>>>([int, int] -> int)

compare(true, 10, 5)

>>>([boolean, int, int] -> boolean)

pow(2,3) - 4

>>>([([int, int] -> int) , int] -> int)

(Apologies to monochromatic slider printers) 22

Type ::= PrimitiveType
 | ProcedureType
 | ListType
PrimitiveType ::= int | boolean
ListType ::= Type ListType | []
ProcedureType ::= (ListType -> Type)

Representing Types

23

Type ::= PrimitiveType | ProcedureType | ListType
PrimitiveType ::= int | boolean
ListType ::= Type ListType | []
ProcedureType ::= (ListType -> Type)

Type

PrimitiveType ListType ProcedureType

superclass

subclasses

public class Type {

 //Default return values for subclasses

 private isPrimitiveType() {return false;}

 private isListType() {return false;}

 private isProcedureType() {return false;}

 public static Type fromString(String s) {

 ArrayList<Object> ast = Parser.parse(s);

 return Type.fromParsed(ast.get(0));

 }

 public static Type fromParsed(Object operation) {

 //Inspect operator and create type

 }

} 24

PrimitiveType

public class PrimitiveType extends Type {

 public String name;

 public PrimitiveType(String name_) {

 this.name = name_;

 }

 @Override //Redefined from class Type

 public isPrimitiveType() {return true;}

 public boolean matches(Type other) {

 return other.isPrimitiveType() &&

 other.name.equals(this.name);

 }

}

25

ListType
public class ListType extends Type {

 public ArrayList<Type> contents;

 public ProcedureType(ArrayList<Type> contents_) {

 this.contents = contents_;

 }

 @Override //Redefined from class Type

 public isListType() {return true;}

 public boolean matches(Type other) {

 // How does this work?

 }

}

26

ListType Continued
public boolean matches(Type other) {

 if (other.isListType() &&

 this.contents.size() == other.contents.size())
{

 for (int i = 0; i < this.contents.size(); i++) {

 Type me = this.contents.get(i);

 Type other = other.contents.get(i);

 if (!me.matches(other))

 return false; //Type mismatch!

 }

 return true;

 }

 else return false;

} 27

ProcedureType
public class ProcedureType extends Type {
 public ArrayList<Type> args;
 public Type returnType;
 public ProcedureType(String name_,
 ArrayList<Type> args_,
 Type returnType_) {
 this.name = name_;
 this.args = args_;
 this.returnType = returnType_;
 }
 @Override //Redefined from class Type
 public isPrimitiveType() {return true;}

 public boolean matches(Type other) {
 // How can we implement this comparison?
 }
} 28

ProcedureType
public class ProcedureType extends Type {

 ...

 public boolean matches(Type other) {

 return other.isProcedureType() &&

 this.args.matches(other.args) &&

 this.returnType.matches(other.returnType);

 }

}

29

Homework

• Problem Set 7 due

• Thursday: Problem Set 9 team requests due

30

