
Java and
Object-Oriented Programming

Declaring the BA CS Major?

• Want to declare the BACS major before
advising and course selection start in a few
weeks?

• There will be an Infosession this Thursday
from 5-6pm in Rice 340
– Just show up!
– Or email horton@cs.virginia.edu for details.

#3

One-Slide Summary
• Real databases, unlike PS5, have many concerns,

such as scalability and atomic transactions.
• A type is a (possibly infinite) set of values.
• Each type supports a set of valid operations.
• Types can be latent or manifest, static or dynamic,

strong or weak.
• An object packages state and procedures.
• A procedure on an object is called a method. We

invoke a method by sending the object a message.
• Inheritance allows one object to refine and reuse

the behavior of another. This is a good thing.
• Java is statically-typed and object-oriented.

#4

Outline
• PS5 vs. the Real

World
• Problem Sets and PS9
• Types
• Java
• Object-Oriented

Programming
– Object = State +

Methods

• Inheritance

#5

Interlude: PS5 vs. Wild

How are commercial databases different
from what you implemented for PS5?

UVa’s Integrated Systems Project to
convert all University information
systems to use an Oracle database was
originally budgeted for $58.2 Million
(starting in 1999). Actual cost ended up
over $100 Million.

http://www.virginia.edu/isp/

#6

Real Databases
• Atomic Transactions: a transaction may involve many

modifications to database tables, but the changes should only
happen if the whole transaction happens (e.g., don’t charge the

credit card unless the order is sent to the shipping dept)

• Security: limit read/write access to tables,
entries and fields

• Storage: need to efficiently store data on disk,
provide backup mechanisms

• Scale: to support really big data tables,
real databases do lots of clever things

#7

How big are big databases?

• Microsoft TerraServer
– Claimed biggest in 1998
– Aerial photos of entire US (1 meter

resolution)
– Let's see an example ...

#8

You are hereYou are here

RotundaRotunda

AmphitheaterAmphitheater

#9

Big Databases
• Microsoft TerraServer

– 3.3 Terabytes (claimed biggest in 1998)
– 1 Terabyte = 240 Bytes ~ 1 Trillion Bytes

• Google Maps (possibly bigger?)
– Better color ...

• Wal-Mart
– 285 Terabytes (2003)

• Stanford Linear Accelerator (BaBar)
– 500 Terabytes (30 KB per particle collision)

#10

How much work?

• Suppose we have a huge database.
• table-select is in (n) where n is the

number of entries in the table
– Would your table-select work for Wal-Mart?
– If 1M entry table takes 1s, how long would it

take Wal-Mart to select from 285TB ~ 2 Trillion
Entries?

#11

How much work?

• table-select is in (n) where n is the
number of entries in the table
– Would your table-select work for Wal-Mart?
– If 1M entry table takes 1s, how long would it

take Wal-Mart to select from 285TB ~ 2 Trillion
Entries? 2 000 000s = ~ 23 days

How do expensive databases perform table-select
so much faster?
Hint: How did we make sorting faster?

#12

Objects

An object packages:
– state (“variables”)
– procedures for manipulating
and observing that state
(“methods”)

Why is this useful?

#13

Problem-Solving Strategies

• PS1-PS4: Functional Programming
– Focused on procedures
– Break a problem into procedures that can be

combined to solve it
– All Python

• PS5: Imperative Programming
– Focused on data
– Design data for representing a problem and

procedures for updating that data
– All Python + Small Java Intro

#14

Problem-Solving Strategies

• PS6: Object-Oriented Programming
– Focused on objects: package procedures and

state
– Model a problem by dividing it into objects
– Lots of problems in real (and imaginary)

worlds can be thought of this way
– All Java

#15

Problem Sets after PS5

PS6: Programming with Objects

PS7: Implementing Interpreters

or
Python

Java
PS8: Dynamic Web Application

PS9: Project
Build a new

dynamic web application

SQL,
HTML,
JavaScript

#16

PS9 Assignment

• Teams of 1-50 students
• Can be anything you want that:

– Involves interesting computation
– Follows University’s use policies (or on

external server)
– Complies with ADA Section 508 (accessible)

Problem: Make an interesting dynamic web site.

A list of example
topics is provided.

#17

PS6: Programming with Objects

PS7: Implementing Interpreters

PS8: Dynamic Web Application

PS9: Project
Build a dynamic web application

PS6

PS7

Extra Ambitious
PS9 Project

PS6

Super
Ambitious PS9

Project

Default Negotiate with Wes in advance

Exam 2

#18

Liberal Arts Trivia: Biology

• This egg-laying, venomous (from a calcaneus
spur found on the hind limb), beaver-tailed,
otter-footed mammal is perhaps best known
for its “nose”, which follows the style of the
Anatidae family of birds. It is native to
eastern Australia and Tasmania, and occurs
on the Australian 20 cent coin.

#19

Liberal Arts Trivia: Art History

• Name the Spanish surrealist artist who
painted The Persistence of Memory (oil on
canvas, 1931).

#20

Most Popular
Programming Languages

1. Java
2. C
3. PHP
4. C++
5. Visual Basic
6. C#
7. Python
8. Perl
9. Delphi
10. JavaScript

TIOBE
Index, March 2010

#21

The Reveal

• Java is almost identical to Python
– Both have variables, if-else, function definitions,

recursion, mylist[3] = 44, ways to print things,
etc.

• Syntactic Differences:
– Python is concise and uses : and [Tab]
– Java is verbose and uses ; and { }

• Semantic Differences:
– Java uses Types to notice errors.
– Java uses Objects to organize state and functions.

#22

Latent Python Danger

def mydouble(x):
 if get_date() != 'Saturday':
 return x * 2
 else:
 return x * “two”

print mydouble(3)
What will you get if you run it today?
Are there any bugs in this program?

#23

Types

#24

Types
Integers Strings

Beatle’s Songs that don’t end on the Tonic
Colors

lists of lists of lists of Strings

programs that halt

• A Type is a (possibly infinite) set of
values

• You can do some things with some types,
but not others
– Each Type has associated valid operations

#25

Why have types?
• Detecting programming errors: (usually)

better to notice error than report incorrect
result

• Make programs easier to read, understand
and maintain: thinking about types can help
understand code

• Verification: types make it easier to prove
properties about programs

• Security: can use types to constrain the
behavior of programs

#26

Types of Types

Does regular Python have types?

>>> 3[0]
TypeError: 'int' object is not subscriptable
>>> “hello” + 2
TypeError: cannot concatenate 'str' and 'int' objects

Yes, without types 3[0] would produce some silly result.
Because of types, it produces a type error.

#27

Python Sees Types When Running
>>> 3 + "hello"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for

+: 'int' and 'str'

#28

Type Taxonomy
• Latent vs. Manifest

– Are types visible in the program text?
• Static vs. dynamic checking

– Do you have to run the program to know if
it has type errors?

• Weak vs. Strong checking
– How strict are the rules for using types?

• (e.g., does the predicate for an if need to be a
Boolean?)

– Continuum (just matter of degree)

#29

Scheme/Python/Charme

• Latent or Manifest?
– All have latent types (none visible in code)

• Static or Dynamic?
– All are dynamic (checked when expression is

evaluated)

• Weak or Strong?
– Which is the strictest?
– You tell me!

#30

Strict Typing
Java> 1 + (5 > 3)
operator + cannot be applied to int,boolean
Python>>> 1 + (5 > 3)
2
Scheme> (+ 1 (> 5 3))
2
C> 1 + (5 > 3)
2

#31

Python Java

• Python (and Scheme) have Latent,
Dynamically checked types
– Don’t see explicit types when you look at code
– Checked when an expression is evaluated

• Java has Manifest, Statically checked types
– Type declarations must be included in code
– Types are checked statically before running

the program (Java: not all types checked
statically)

#32

Python vs Java

def sum(x):

 t = 0 # running total

 for i in range(len(x)):

 t = t + x[i]

 return t

lst = [1,2,3];

print sum(lst);

public class PS5 {

 public static int sum(int [] x) {

 int t; // running total

 for (int i=0; i<x.length; i=i+1) {

 t = t + x[i];

 }

 return t;

 }

 public static void main(Strings [] args) {

 int [] lst = {1, 2, 3};

 System.out.println(sum(lst));

 }

}

#33

Java Example 2

class Test {
 int tester (String s)
 {
 int x;
 x = s;
 return "okay";
 }
}

The result
is an integer

The place x
holds an integer

The parameter
must be a String

#34

Java Example

class Test {
 int tester (String s)
 {
 int x;
 x = s;
 return "okay";
 }
}

The result
is an integer

The place x
holds an integer

> javac types.java
types.java:5: Incompatible
type for =. Can't convert
java.lang.String to int.
 x = s;
 ^
types.java:6: Incompatible
type for return. Can't convert
java.lang.String to int.
 return "okay";
 ^
2 errors

The parameter
must be a String

javac compiles (and type checks)
the program. It does not execute it.

#35

Why Learn New Languages?
• Languages change the way we think.

– The linguistic relativity principle (also known as
the Sapir-Whorf Hypothesis) is the idea that the
varying cultural concepts and categories inherent
in different languages affect the cognitive
classification of the experienced world in such a
way that speakers of different languages think and
behave differently because of it. Roger Brown has
drawn a distinction between weak linguistic
relativity, where language limits thought, and
strong linguistic relativity, where language
determines thought. [Wikipedia]

• See also: Orwell's 1984
#36

Why Learn New Languages?
• Deepening Understanding

– By seeing how the same concepts we encountered
in Scheme are implemented by a different
language, you will understand those concepts
better (especially procedures, assignment, and
data abstraction).

• Building Confidence
– By learning Java (mostly) on your own, the next

time you encounter a problem that is best solved
using a language you don't know, you will be
confident you can learn it (rather than trying to
use the wrong tool to solve the problem.)

#37

Why Learn New Languages

• Fun! Programming in can be Java is fun.
• Especially because:

– It is commonly-used to solve real-world problems.
– It is well-suited to group work.
– It makes it easy to catch errors in advance.
– It is strongly object-oriented.
– They were going to name it “Oak” after the tree

outside the office window, but that was already
trademarked.

#38

#39

Java
• Java is a universal programming language.

– Everything you can compute in Python you can
compute in Java, and vice versa

– PS 7: implement a Python interpreter in Java
– Chapter 12: more formal definition of a universal

programming language

• Java is an imperative language.
– Designed to support programming where most of

the work is done using assignment statements
– x = sqrt(4) + 1;

#40

Objectifying Java

• Java is also an object-oriented language.
– Objects encapsulate state (i.e., variables and

information) and the methods that operate on
that state together.

– In Java, almost all data are objects.
– Problem Set 6 covers programming with objects.
– Java has built-in support for classes, methods and

inheritance.

#41

Learning New Languages

• Syntax: Where the {, !, (, :, etc., all go
– If you can understand a BNF grammar, this is easy
– But it still takes some getting used to

• Semantics: What does it mean?
– Learning the evaluation rules
– This is harder, but most programming languages

have very similar rules (with subtle differences)

• Style: What are the idioms and customs?
– Many years to be a “professional” Java

programmer, but not long to write a program
#42

Java If
• Instruction ::=

if (Expression) {
 Block
} else {
 Block
}

• Semantics: Evaluate the Expression (which
must be a Boolean). If it evaluates to a true
value, evaluate the first Block. Otherwise,
evaluate the second Block.

• You can omit else { ... }

#43

Java If Example

if (this_one > best_sofar) {
 System.out.println(“This one is better!”);
} else {
 System.out.println(“Not better!”);
}

#44

Learning Java

• We will introduce (usually informally) Java
constructs in class as we use them (and in
example code in PS5 and PS6)

• The “Java Lab Guide” is a video introduction
to Java and Eclipse:
– Java : Eclipse :: Python : PyCharm
– Covers what you need for PS5.

• On-line Java documentation

#45

Making Objects

public class Dog {
 public static void bark() {
 System.out.println(“wuff wuff wuff”);
 }
}

ClassDefinition ::=
 public class Name {

FunctionOrFieldDefinitions
}

In Washington, it's dog eat dog.
In academia, it's exactly the opposite.

- Robert Reich
#46

Making a Dog

public class Dog {
 public static void bark() {
 System.out.println(“wuff wuff wuff”);
 } }
...
Dog spot = new Dog();
In Java, you must declare a variable with its type

before you give it a value.

Expression ::= new ClassName(args)

#47

Java Procedures (= Methods)
public class Dog {
 public static void bark() {
 System.out.println(“wuff wuff wuff”);
 } }

MethodDefinition ::= Modifiers Type Name (Params) Block
Params ::= SomeParams | epsilon
SomeParams ::= Type Name | Type Name, SomeParams
Block ::= { Statements }
Statements ::= Statement ; MoreStatements
MoreStatements ::= epsilon

 | Statement ; MoreStatements

#48

Some Java Procedures
int square(int x) { int bigger(int a, int b) {

 return x*x; if (a > b)
} return a;
 else return b;
 }
int biggest(int [] lst) {
 int biggest = lst[0];
 for (int i = 1; i < lst.length; i = i + 1)
 if (lst[i] > best) biggest = lst[i];
 return biggest;
}

#49

Barking: Invoking Methods

public class Dog {
 public static void bark() {
 System.out.println(“wuff wuff wuff”);
 } }
...
Dog spot = new Dog();
spot.bark(); // Invoke bark on spot
wuff wuff wuff wuff

ApplicationStmt ::= Expr.Name(Args)
Args ::= epsilon | MoreArgs
MoreArgs ::= Argument , MoreArgs

| Argument
Argument ::= Expr

#50

Object Lingo
• “Apply a procedure” = “Invoke a method”
• We apply a procedure to parameters.
• We invoke a method on an object, and pass in

parameters.
– Inside a method you can also see the object itself

(sometimes called the self parameter).

#51

Liberal Arts Trivia: Art History and
American Literature

• Give the Renaissance master (or Ninja Turtle)
associated with each work of art:

(a) Tomb of Antipope John XXIII

(b) Mona Lisa

(c) Pieta

(d) Transfiguration

#52

Liberal Arts Trivia: Polish History,
Chemistry, and Physics

• This physicist and chemist of Polish
upbringing and French citizenship was the
first person honored with two Nobel prizes,
the first woman to win a Nobel prize, and the
first woman to serve as a professor at the
University of Paris. The world's first studies
into the treatment of cancers using
radioactive isotopes were conducted under
her direction.

#53

Liberal Arts Trivia: Cooking

• This Japanese delicacy is vinegared rice,
usually topped with other ingredients,
including fish. The dish as we know it today
was invented as a fast food by Hanaya Yohei
at the end of the Edo period (19th century) in
Tokyo: it could be eaten on the road side or
in a theatre using fingers or chopsticks. The
basic idea can be traced back to 4th century
BCE China as a preservative: the fermentation
of the rice prevents the fish from spoiling.

#54

Dogs with Names
public class Dog {

 public String name; // Field (= State)

 public Dog(String n) { // Constuctor

 name = n; // Initialize Field

 }

 public void bark() { // Method

 println(name + “says wuff!”);

 } } // Methods can see fields!

...

Dog myDog = new Dog(“Spoticus”); // “new” calls Constructor, returns new object

myDog.bark(); // Invoke Method

Spoticus says wuff!

Dog yourDog = new Dog(“Ginger”); // Not all objects have the same state!

yourDog.bark();

Ginger says wuff!

#55

Review: Making a Dog

public class Dog {
 Public void bark() {
 System.out.println(“wuff wuff”);
 }
}
...
Dog spot = new Dog(); // spot has type Dog
You must declare the type first!

#56

Java “Lists”
• Python has a built-in datatype for a list of

fixed length. It is called an array [].
 int [] myArray = {8,6,7};
 println(myArray[0]);
1
 println(myArray.length);
3
String [] myNames = {“Wes”,”Weimer”};
println(myNames[1]);
Weimer

#57

Implementing square_each in Java

def square_each(lst):
 for i in range(len(lst)):
 lst[i] = lst[i] * lst[i] # imperative!

• Let's do a literal translation of this into Java.

#58

Java square_each

public static void square_each(int [] lst) {
 for (int i = 0; i < lst.length; i = i + 1) {
 lst[i] = lst[i] * lst[i] ; // still imperative!
 }
}

• Just like the previous one, this mutates lst.

#59

Inheritance

#60

Hey, Scooby!
public class Dog {
 public Dog(n) { name = n; }
 public String name;
 public void bark() {
 println(“wuff wuff”);
 }
}
public class TalkingDog extends Dog {
 public void speak(String words) {
 println(name + “ says “ + words);
 }
} // inherits all Dog fields and methods
TalkingDog scooby = new TalkingDog(“Scooby”);
scooby.speak(“solve the mystery!”);
Scooby says solve the mystery!

#61

Subclasses

public class TalkingDog extends Dog {
 public void speak(String words) {
 println(name + “ says “ + words);
 }
} // inherits all Dog fields and methods

• TalkingDog is a subclass of Dog.
• Dog is the superclass of TalkingDog.

– Every TalkingDog is also a Dog.
– (But not vice-versa.)

#62

Every Dog Has
Its Day

public class Dog {
 public Dog(n) { name = n; }
 public String name;
 public void bark() {
 println(“wuff wuff”);
 }
}
public class TalkingDog extends Dog {
 public void speak(String words) {
 println(name + “ says “ + words);
 }
} // inherits all Dog fields and methods

Dog ginger = new Dog(“Ginger”);
TalkingDog scooby = new Dog(“Scooby”);
scooby.speak(“snack!”);
Scooby says snack!
ginger.speak(“this won't work”);
Type Error
scooby.bark();
wuff wuff

#63

Speaking About Inheritance

• Inheritance is using the definition
of one class to define another
class.

• TalkingDog inherits from Dog.
• TalkingDog is a subclass of Dog.
• The superclass of TalkingDog is

Dog.
• These all mean the same thing!

Dog

TalkingDog

#64

Problem Set 6

• Make an adventure game by programming
with objects.

• Many objects in our game have similar
properties and behaviors, so we use
inheritance.

#65

PS6 Classes

SimObject

PhysicalObject Place

MobileObject

OwnableObject Person

Student PoliceOfficer
#66

Object-Oriented Terminology
• An object is an entity that packages state and

procedures.
• The state variables that are part of an object

are called instance variables.
• The procedures that are part of an object are

called methods.
• We invoke (call) a method. The object itself

and its fields are also visible in a method.
• Inheritance allows one class to refine and

reuse the behavior of another.
• A constructor is a procedure that creates new

objects (e.g., public Dog() { ... }).

#67

Charge
• Start PS6 early

– PS6 is challenging
– Opportunity for creativity

• Start thinking about PS9 Project ideas
– If you want to do an “extra ambitious” project

convince me your idea is worthy before Nov 10
(ps7 and 8) / Nov 17 (ps8)

– Discuss ideas and look for partners on the
forum

#68

Homework
• PS 5 due soon
• PS 6 due shortly thereafter

