
BanburismusBanburismus
and theand the

Story So FarStory So Far

#2

One-Slide Summary
• British codebreakers used cribs (guesses), brute force,

and analysis to break the Lorenz cipher. Guessed wheel
settings were likely to be correct if they resulted in a
message with the right linguistic properties for German.

• If you've guessed the right wheel settings, two adjacent
letters are more likely to be the same than they are to
be different letters: Double Deltas.

• We can tell if two messages were encrypted using the
same wheel settings (= same key) because the output
letters will match when the input letters match. So we
can try to “line them up” using Banburismus to look for
matches.

• Tree sorting is only efficient if the trees are balanced. If
not, it's (n2). The best possible sorting is (n logn).

#3

Outline

• WWII Codebreaking
• Double Deltas
• Machines
• Banburismus
• Tree Sorting
• Course Roadmap

Pick Up Graded
Problem Sets

Or Possibly
Lose Points!

#4

Reverse Engineering Lorenz
• From the 2 intercepted messages, Col. John

Tiltman worked on guessing cribs to find M1
and M2: 4000 letter messages, found 4000
letter key K1

• Bill Tutte (recent Chemistry graduate) given
task of determining machine structure
– Already knew it was 2 sets of 5 wheels and 2

wheels of unknown function
– Six months later new machine structure likely to

generate K1

#5

Intercepting Traffic
• Set up listening post to intercept traffic

from 12 Lorenz (Fish) links
– Different links between conquered capitals
– Slightly different coding procedures, and

different configurations

• 600 people worked
 on intercepting traffic

#6

Breaking WWII Traffic
• Knew machine structure, but a different

initial configuration was used for each
message

• Need to determine wheel setting:
– Initial position of each of the 12 wheels
– 1271 possible starting positions
– Needed to try them fast enough to decrypt

message while it was still strategically valuable

This is what you did for PS4 (except with fewer wheels)

#7

Recognizing a Good Guess

• Intercepted Message (divided into 5
channels for each Baudot code bit)

Zc = z0z1z2z3z4z5z6z7…

zc, i = mc,i  xc,i  sc,i

 Message Key (parts from S-wheels and rest)

• Look for statistical properties
– How many of the zc,i’s are 0?

– How many of (zc,i+1  zc,i) are 0?

½ (not useful)

½

#8

Double Delta
  Zc,i = Zc,i  Zc,i+1

Combine two channels:

 Z1,i   Z2,i =  M1,i   M2,i

   X1,i   X2,i

   S1,i   S2,i

= ½ (key)

> ½ Yippee!

> ½ Yippee!

Why is  M1,i   M2,i > ½
Message is in German, more likely following

letter is a repetition than random

Why is  S1,i   S2,i > ½
S-wheels only turn when M-wheel is 1

#9

Actual Advantage
• Probability of repeating letters

 Prob[ M1,i   M2,i = 0] ~ 0.614
 3.3% of German digraphs are repeating

• Probability of repeating S-keys

 Prob[ S1,i   S2,i = 0] ~ 0.73

Prob[ Z1,i   Z2,i   X1,i   X2,i = 0]

 = 0.614 * 0.73 + (1-0.614) * (1-0.73)

  M and S are 0  M and S are 1

 = 0.55 if the wheel settings guess is correct (0.5 otherwise)

#10

Using the Advantage
• If the guess of X is correct, should see higher

than ½ of the double deltas are 0
• Try guessing different configurations to find

highest number of 0 double deltas
• Problem:

of double delta operations to try one config
= length of Z * length of X
= for 10,000 letter message = 12 M for each setting

* 7  per double delta

= 89 M  operations
(that's a lot!)

Need a fast
way to compute XOR!

#11

Heath Robinson Machine

• Dec 1942: Decide to build a
machine to do these s
quickly, due June 1943

• Apr 1943: first “Heath
Robinson” machine is
delivered!
– Predecessor to Colossus

• Intercepted ciphertext on
tape:
– 2000 characters per second

(12 miles per hour)

– Needed to perform 7 
operations each ½ ms Heath Robinson, British Cartoonist (1872-1944)

#12

Colossus

• Heath Robinson machines were too slow
• Colossus designed and first built in Jan 1944
• Replaced keytext tape loop with electronic keytext

generator
• Speed up ciphertext tape:

– 5,000 chars per second = 30 mph
– Perform 5 double deltas simultaneously
– Speedup = 2.5X for faster tape * 5X for parallelism

#13

Colossus Design

Electronic
Keytext

Generator
Logic Tape Reader

Counter
Position
Counter

Printer

Ciphertext Tape

#14

Impact on WWII
• 10 Colossus machines operated at

Bletchley park
– Various improvements in speed

• Decoded 63 million letters in Nazi
command messages

• Learned German troop locations to plan
D-Day (knew the deception was working)

#15

Colossus History
Kept secret after the war, all machines destroyed

During WWII
Rebuild, Bletchley Park,
Summer 2004

#16

Gender and WWII
• “By the end of the war, the Testery had grown to 9

cryptographers, 24 ATS girls [sic] with a total staff of 118,
organised in 3 shifts working round the clock.”
– ATS = “Auxiliary Territorial Service”, the women's branch of the

British Army during WWII

• Example: Helen Currie joined the Auxiliary Territorial
Service (ATS) in 1938, training as an intercept
operator in 1942. This led to her transfer to Bletchley
Park, where she joined the Tunny-breaking section called the
“Testery”. Initially her job was to translate punched paper
tape into German by sight; later she operated a British copy
of the German Tunny machine which produced the German
plaintext automatically. After the war she entered local
government and served as a magistrate.

#17

How could the folks at
Bletchley Park solve a

problem ~ 1 quintillion times
harder than ps4?

#19

Motivation Helps…

Confronted with the prospect of defeat,
the Allied cryptanalysts had worked night
and day to penetrate German ciphers. It
would appear that fear was the main
driving force, and that adversity is one of
the foundations of successful
codebreaking.

Simon Singh, The Code Book

#20

Liberal Arts Trivia: Maritime Law
• A letter of marque is an official government

document authorizing an agent to search,
seize, or destroy specified assets or personnel
belonging to a foreign party beyond the
borders of the nation ("marque" or frontier).
They are usually used to authorize private
parties to raid and capture merchant shipping
of an enemy nation. In the past, a ship
operating under a letter of marque and
reprisal was privately owned and was called a
"private man-of-war" or ... what?

#21

Liberal Arts Trivia: Geography

• This capital city of Uttar Pradesh, the most
populous state of India, is popularly known as
the The City of Nawabs. It is also known as
the Golden City of the East, Shiraz-i-Hind and
The Constantinople of India. It is a center of
Hindi and Urdu literature, and the birthplace
of Kathak, a classic Indian dance form. The
city was besieged during the Indian Rebellion
of 1857.

#22

Banburismus

Given two Enigma-
encrypted messages, how
can we determine if they
were encrypted starting
with the same wheel
settings?

Enigma in Use,
10 December 1943

#24

Reverse
Engineering

Enigma

“This fictional movie about a fictional U.S. submarine
mission is followed by a mention in the end credits of
those actual British missions. Oh, the British deciphered
the Enigma code, too. Come to think of it, they pretty
much did everything in real life that the Americans do in
this movie.”

Roger Ebert’s review of U-571
(2000 Academy Award Winner)

#25

Simple Substitution Ciphers

ABCDEFGHIJKLMNOPQRSTUVWXYZ

JIDKQACRSHLGWNFEXUZVTPMYOB

en
cr yp

t d
ec

ry
p
t

HELLO  RQGGF
#26

Rotor Wheels

Simple
substitution

Latch turns
next rotor
once per
rotation

#27

Im
ag

e
fr

o
m

h
tt

p
:/

/e
n
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/
Im

ag
e:

E
n
ig

m
a-

ac
ti
o
n
.p

n
g

#28

Language is Non-Random

• Random strings: the probability of two
letters in the two messages matching is
1/26 (number of letters in alphabet)

• Same-encrypted strings: the output
letters will match when the input letters
match
– This happens much more frequently because

some letters (e.g., “e” is ~13% of all English
letters) are more common

#29

Alan Turing’s Solution

GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQS

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

M1:

M2:

#31

Banburismus

GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQS

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

M1:

M2:

#34

Trying Possible Alignments
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQS

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAX..

...

#35

Trying Possible Alignments
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQS

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAX..

...

#36

Trying Possible Alignments
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQS

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAX..

...

#37

Trying Possible Alignments
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQS

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVU

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAX..

...

#39

Liberal Arts Trivia: Geology

• A stratovolcano or composite volcano is a tall,
conical volcano made of many layers of lava,
tephra and volcanic ash: they are
characterized by steep sides and periodic
eruptions. They are common in subduction
zones where the ocean crust is drawn under
the continental crust. Mount St. Helens and
Mount Fuji are both stratovolcanos: name the
country containing each one.

#40

Liberal Arts Trivia: Philosophy
• This 18th century Prussian philosopher wrote on

epistemology, as well as religion, law, and
history. One of his most prominent works is the
Critique of Pure Reason, an investigation into
the limitations and structure of reason itself,
encompassing an attack on traditional
metaphysics and epistemology. He sought to
create a compromise between empiricists and
rationalists, claiming that the grand questions of
speculative metaphysics cannot be answered by
the human mind, but that the sciences are firmly
grounded in laws of the mind.

#41

Liberal Arts Trivia: Mythology

• In Egyptian mythology, this falcon-headed son
of Isis and Osiris fought with Seth for the
throne of Egypt. In the battle his eye was
wounded and later healed by Isis; this became
an important symbol for renewal. He united
Egypt and bestowed divinity on the pharaohs
(who were viewed as his living incarnations).
Name this sun, sky and war god, shown here
in hieroglyphs:

The Story So Far

#43

insert-one-tree
Each time we call
insert-one-tree, the size
of the tree approximately
halves (if it is well
balanced).

Each application is
constant time.

The running time of insert-one-tree is in  (log n) where
n is the number of elements in the input tree, which
must be well-balanced.

def insert_one_tree(cf, new_elt, tree):
 if not tree:
 return make_tree([], new_elt, [])
 element_here = get_element(tree)
 if cf(new_elt, element_here):
 return make_tree(
 insert_one_tree(cf, new_elt, get_left(tree)),
 element_here, get_right(tree))
 else:
 return make_tree(
 get_left(tree), element_here,
 insert_one_tree(cf, new_elt, get_right(tree)))

#44

quicker-insert-one

def quicker_insert_one(cf, lst):
 if not lst: return []
 return insert_one_tree(cf,
 lst[0],
 quicker_insert_one(cf, lst[1:]))

No change (other than using insert_one_tree)…but evaluates to a tree not a list!

#45

extract_elements

We need to make a list of all the tree
elements, from left to right.

def extract_elements(tree):
if tree == []: return []
return extract_elements(get_left(tree)) +

[get_element(tree)] +
extract_elements(get_right(tree))

#46

Running time of insert-sort-tree
def insert_one_tree(cf, new_elt, tree):
 if not tree:
 return make_tree([], new_elt, [])
 element_here = get_element(tree)
 if cf(new_elt, element_here):
 return make_tree(
 insert_one_tree(cf, new_elt, get_left(tree)),
 element_here, get_right(tree))
 else:
 return make_tree(
 get_left(tree), element_here,
 insert_one_tree(cf, new_elt, get_right(tree)))

def insert_sort_tree(cf, lst):
 def quicker_insert_one(cf, lst):
 if not lst: return []
 return insert_one_tree(cf,
 lst[0], quicker_insert_one(cf, lst[1:]))
 return extract_elements(q_i_o(cf,lst))

(log n)

n = number of
elements in tree

(n log n)

n = number of
elements in lst

#47

0

2000

4000

6000

8000

10000

12000

2

1
0

1
8

2
6

3
4

4
2

5
0

5
8

6
6

7
4

8
2

9
0

9
8

n log2 n
insert-sort-tree

n2
insert-sort

Growth of time to sort random list

#48

What if tree is not well-balanced?

2

3

5

8

9

A pathologically
unbalanced tree is
as bad as a list!

insert-one worst case
requires n recursive
applications,
so insert-sort-tree
worst case is in (n2)

#49

Can we do better?

• Making all those trees is a lot of work
• Can we divide the problem in two halves,

without making trees?
This is the famous “Quicksort”
algorithm invented by Sir Tony
Hoare. See Course Book.

There are lots of ways to do a little bit better, but no way to do
asymptotically better. All possible sort procedure have running times

in (n log n). (We’ll explain why later in the course...)

#50

Course RoadmapSynthesis

Analysis

C
h

 2
: L

a
ng

ua
ge

C
h

 3
: P

ro
gr

am
m

in
g

C
h

 4
: P

ro
ce

du
re

s

C
h

 5
: D

at
a

C
h

 7
: C

os
t

C
h

 8
: T

im
e

C
h

 9
:

S
or

tin
g

an
d

S
eq

ue
nc

in
g

P
S

5
, C

h
 1

0:
 S

ta
te

P
S

6,
 C

h
 1

1:
 O

bj
e

ct
s

C
h

 1
4

: T
ra

ct
ab

ili
ty

C
h

 1
2:

 M
od

el
s

P
S

7
, C

h
 1

4:
 M

et
a-

La
n

g
ua

ge

C
h

 1
3

:
C

om
p

ut
ab

ili
ty

P
S

8
, 9

: B
ui

ld
in

g
 W

e
b

A

pp
lic

at
io

n
s

You
are
here

C
h

 6
:

M
ac

h
in

e

#51

Computer Science 1120 so far
• How to describe information processes by defining

procedures
– Programming with procedures, lists, recursion
– Chapters 3, 4, 5

• How to predict properties about information
processes
– Predicting running time, , Ο, Ω

• How to elegantly and efficiently implement
information processes
– Chapter 3 (rules of evaluation)
– Chapter 6 (machines)

#52

CS1120 upcoming
• How to describe information processes by defining

procedures
– Programming with state, objects, networks
– You will learn Java as well as Python

• How to predict properties about information
processes
– What is the fastest process that can solve a given

problem?
– Are there problems which can’t be solved by algorithms?

• How to elegantly and efficiently implement
information processes
– How to implement a Python interpreter

#53

The Liberal Arts

Trivium (3 roads)

language

Quadrivium (4 roads)

numbers

Grammar Rhetoric Logic Arithmetic

Geometry

Music

Astronomy

From Lecture 1:

#54

Liberal Arts Checkup
• Grammar: study of meaning in written

expression

• Rhetoric: comprehension of
verbal and written discourse

• Logic: argumentative discourse
for discovering truth

• Arithmetic: understanding numbers

• Geometry: quantification of space

• Music: number in time

• Astronomy

BNF replacement rules for describing languages,
rules of evaluation for meaning

Not much yet…
interfaces between

components (PS6-9),
program and user (PS8-9)

Rules of evaluation, if,
recursive definitions

Not much yet…
wait until last third

Curves as procedures,
fractals (PS3)

Yes, listen to “Hey Jude!”

Read Neil deGrasse Tyson’s essay

T
riv

iu
m

Q
ua

dr
iv

iu
m

#55

Homework

• Exam 1 Out

