Quickest
y Sorting
fQ\ and
\» Double Deltas

,

Nalld ,
’l’}? Ml

One-Slide Summary

Insert-sort is ©(n?) worst case (reverse list), but is
O(n) best case (sorted list).

A recursive function that divides its input in half
each time is often in ©(log n).

If we could divide our input list in half rapidly, we
could do a quicker sort: O(n log n).

Sorted binary trees are an efficient data structure
for maintaining sorted sets.

British codebreakers used cribs (guesses), brute
force, and analysis to break the Lorenz cipher.
Guessed wheel settings were likely to be correct if
they resulted in a message with the right linguistic
properties for German (e.g., repeated letters).

Outline
e [nsert-sort

» Going half-sies
 Sorted binary trees
¢ Quicker-sort

* WWII Codebreaking

H, CoME
ON M.

THANKS,
PROF. MY,
Q

Pick Up Graded
Problem Sets
(from Mohsin)!

best-first-sort vs. insert-sort

» Both are ®(n?) worst case (reverse list)

» Both are ®(n?) when sorting a
randomly ordered list

- But insert-sort is about twice as fast

* insert-sort is ©(n) best case (ordered
input list)

#5

How much work is insert-sort?

def insert_sort(lst, cf):
if not Ist: return []
return insert_one(lIst[0], insert_sort(Ist[1:], cf))

def insert_one(elt, Ist, cf):
if not Ist: return [elf]
if cf(elt, Ist[0]): return [elt] + Ist
return [Ist[0]] + insert_one(elt, Ist[1:], cf)
How many times does insert-
sort evaluate insert-one?

ntimes (once for each element)

running time of insert-
one is in O(n)

insert-sort has running time in ®(n?) where n is the
number of elements in the input list

#4

Can we do better?

insert_one(88, [1,2,3,5,6,22,63,77,89,90],
ascending)

Suppose we had procedures
first_half(Ist)

second_half(Ist)
that quickly divided the list in two halves?

quicker-insert using halves

def quicker_insert(elt, Ist, cf):

if not Ist: return [elt] # just like insert_one

if len(Ist) == 1: # handle 1 element by hand
return [elt]+Ist if cf(elt, Ist[0]) else Ist+[elt]

front = first_half(Ist)

back = second_half(Ist)

if cf(elt, back[0]): # insert into front half
return quicker_insert(elt, front, cf) + back

else: # insert into back half
return front + quicker_insert(elt, back, cf)

#7

Evaluating quicker-sort

>>> quicker_insert(3, [1,2,4,5,7,8,9,10], ascend)
Front = [1,2,4,5]

:zaSC k< 7?&2150(]) def quicker_insert(elt, Ist, cf):
return quicker_insert(3,[1,2,4,5],ascend) + [7,8,9,10] if not Ist: return [elf]
Front=[1,2] if len(Ist) == 1:

Back = [4,5]

Is 3 <47? Yes. So

return quicker_insert(3,[1,2],ascend) + [4,5]
Front = [1]

Back = [2]

Is 3 <2? No. So

Return [1] + quicker_insert(3,[2],ascend)
One element. Compare 3 and 2, return [2,3]

just like insert_one
handle 1 element
return [elt]+Ist if cf(elt, Ist[0]) else Ist+[elt]
front = first_half(Ist)
back = second_half(Ist)
if cf(elt, back[0]): # insert into front half
return quicker_insert(elt, front, cf) + back
else: # insert into back half
return front + quicker_insert(elt, back, cf)

So final result is:
[1]+[2,3] + [4.,5] + [7,8,9,10]

Every time we call quicker-
insert, the length of the list is
approximately halved!

#8

How much work is quicker-sort?

def quicker_insert(elt, Ist, cf):

if not Ist: return [elt] # just like insert_one

if len(Ist) == 1: # handle 1 element
return [elt]+Ist if cf(elt, Ist[0]) else Ist+[elt]

front = first_half(Ist)

back = second_half(Ist)

if cf(elt, back[0]): # insert into front half
return quicker_insert(elt, front, cf) + back

else: # insert into back half
return front + quicker_insert(elt, back, cf)

Each time we call
quicker-insert, the size of
Ist halves. So doubling
the size of the list only
increases the number of
calls by 1.

List Size # quicker_insert applications
1 1

2
4
8
16
32

OB WN

#9

» The argan tree, found primarily

Liberal Arts Trivia: ?

in Morocco, has a knobby,
twisted trunk that allows these :
animals to climb it easily. The |
animals eat the fruit, which has
an indigestible nut inside,
which is collected by farmers
and used to make argan oil:
handy in cooking and
cosmetics, but pricey at $45
per 500 ml.

-— -
e

Goats in Trees

" E——— (e

T

Qb'c'ité

Liberal Arts Trivia:

Scandinavian Studies

This capital of and largest city in Denmark is
situated on the islands of Zealand and
Amager. It is the birthplace of Neils Bohr,
Seren Kierkegaard, and Victor Borge. The
city's origin as a harbor and a place of
commerce is reflected in its name. Its original
designation, from which the contemporary
Danish name is derived, was Keapmannahafn,
"merchants’ harbor”. The English nhame for the
city is derived from its (similar) Low German
name.

#12

Remembering Logarithms

log, n =x means b*=n

What is log, 10247
What is log,, 10247

Is log,,n in ©(log, n)?

#13

Changing Bases

log,n = (1/log,b) log, n

If K and b are
constants,
this is constant

O(log,n) = O(log,,n) = O(log n)

| No need to include a constant base within asymptotic operators. |

#14

Number of Applications

Assuming the list is well-balanced,
the number of applications of

quicker-insert is in ©(log n) where n
is the number of elements in the

quicker-sort ?

def quicker_insert(elt, Ist, cf):
if not Ist: return [elt]
if len(Ist) == 1: # handle 1 element by hand
return [elt]+Ist if cf(elt, Ist[0]) else Ist+[elt]

def quicker_sort(Ist, cf):
if not Ist: return []
return quicker_insert(

Ist[0], front = first_half(Ist)
i . back = second_half(Ist)
gil:;ICker_Sort(IStH 1, o), if cf(elt, back[0]): # insert into front half

return quicker_insert(elt, front, cf) + back
else: # insert into back half
return front + quicker_insert(elt, back, cf)

quicker_sort using halves would have running time in
O(n log n) if we have first_half, second_half, and
append (e.g., [1,2,3] + [4,5,6]) procedures that run in

constant time.

#16

input list.
Orders of Growth

14000

12000 l’l2
10000 /
8000 /

6000 /

4000 //

2000 n logn

T o 3w a ar e o s e o
#7

Is there a fast first-half procedure?

» No! (at least not on lists)

» To produce the first half of a list length
n, we need to walk down the first n/2
elements

* So, first-half on lists has running time in
O(n/2)=0(n)

#18

Making it faster

We need to either:

1. Reduce the number of applications of
insert-one in insert-sort

Impossible — need to consider each element
2. Reduce the number of applications of
quicker-insert in quicker-insert
Unlikely... each application already halves the list

3. Reduce the time for each application of
quicker-insert

Need to make first-half, second-half and append faster than ©(n)

#19

“Nething yel, ...How about you, Newlon?"

#20

Sorted Binary Trees

left right

A tree containing
all elements x such
that cf(x,el) is true

A tree containing
all elements x such
that cf(x,el) is false

#21

Tree Example

null null null

cfis <

null null null

#22

Tree Example

Where would we put 37

null null null

null null null

#23

Representing Trees

def make_tree(left, el, right):
return [el, left, right]

left and right are trees
([1is atree)

def get_element(iree):
return tree[O] tree must be a non-null tree
def get_left(tree):
return tree[1] tree must be a non-null tree
def get_right(tree):

return tree[2] tree must be a non-null tree

#24

Representing Trees

A = make_tree([], 1, [I)
B = make_tree(A, 2, [])
C = make_tree([], 8, [])
D = make_tree(B, 5, C)

#25

insert-one-tree

def insert_one_tree(cf, new_elt, tree):
if not tree: If the tree is null, make a new tree
return make_tree([], new_elt, [1) with new_elt as its element and
element_here = get_element(tree) no left or right trees.
if cf(new_elt, element_here):
return make_tree(
insert_one_tree(cf, new_elt, get_left(tree)),
element_here,
get_right(tree))
else:
return make_tree(
get_left(tree),
element_here,
insert_one_tree(cf, new_elt, get_right(tree)))

Otherwise, decide

if elt should be in

the left or right subtree.
Insert it into that

subtree, but leave the
other subtree unchanged.

#26

How much work is insert-one-tree?

def insert_one_tree(cf, new_elt, tree):
if not tree:
return make_tree([], new_elt, [])
element_here = get_element(tree)
if cf(new_elt, element_here):
return make_tree(
insert_one_tree(cf, new_elt, get_left(tree)),
element_here, get_right(tree))
else:
return make_tree(
get_left(tree), element_here,
insert_one_tree(cf, new_elt, get_right(tree)))

Each time we call
insert-one-tree, the size

halves (if it is well
balanced).

Each application is
constant time.

of the tree approximately

The running time of insert-one-tree is in
O (log n) where n is the number of elements in
the input tree, which must be well-balanced.

#27

quicker-insert-one

def quicker_insert_one(cf, Ist):
if not Ist: return []
return insert_one_tree(cf,
Ist[0],
quicker_insert_one(cf, Ist[1:]))

No change (other than using insert_one_tree)...but evaluates to a tree not a list!

Practice: You should be able to write a procedure that takes a TREE as input
and prints out all of its elements (e.g., “from left to right”).

#28

Lorenz
C1pher E—

3 I |

#29

Liberal Arts Trivia: Classics

This ancient Greek epic poem, traditionally
attributed to Homer, is widely believed to be
the oldest extant work of Western literature.
It describes the events of the final year of the
Trojan War. The plot follows Achilles and his
anger at Agamemnon, king of Mycenae. It is
written in dactylic hexameter and comprises
15,693 lines of verse. It begins:

- pAviy delde Bed MnAniadsw AxiAfog

- oLAopévny, N pupi’ Axalolg GAye' €Bnkev

#30

Liberal Arts Trivia: Chemistry

 This violet variety of
quartz, often used in
jewelry, takes its name
from the ancient Greek (a
("not”) and methustos
("intoxicated")), a
reference to the belief that
it protected its own from
drunkenness; ancient
Greeks and Romans made
drinking vessels of it to
prevent intoxication.

Liberal Arts Trivia: Literature

« Name the author of the Age of Innocence
(1920). The novel describes the upper class in
New York city in the 1870s and questions the
mores and assumptions of society. The title is
an ironic comment on the polished outward
manners of New York society, when compared
to its inward machinations. The authors was
the first woman to win the Pulitzer Prize for
Literature.

#32

Lorenz Wheels

12 wheels
501 pins
total (set
to control
wheels)

Work to break in
O(p*) so real
Lorenz is 41'%/5% ~
1 quintillion (10'8)
times harder!

#33

Code Breaking Intuition

» Suppose we are using a simple letter
substitution cipher (i.e., replace every A with

Q, etc.)

« You intercept these two messages:

- PF1120: Vagebghpgvba gb Pbzchgvat:
Rkcybengvbaf va Ynathntr, Ybtvp, naq Znpuvarf

- PF1120: Vageb gb Pbzc: Rkcyber Ynat., Ybtvp, naq
Znpu.
» What does the first one say? What hints did
you have?

#34

Breaking Fish

e Gov't Communications HQ learned about
first Fish link (Tunny) in May 1941
- British codebreakers used “Fish” to refer to
German teleprinter traffic

- Intercepted unencrypted Baudot-encoded test
messages

» August 30, 1941: Big Break!

- Operator retransmits failed message with same
starting configuration

- Gets lazy and uses some abbreviations, makes
some mistakes
o SPRUCHNUMMER/SPRUCHNR (Serial Number)

#35

“Two Time” Pad

« Allies have intercepted:
C1=M1® K1
C2 =M2® K1

Same key used for both (same starting
configuration)

» Breaking message:
C1® C2=(M1®K1)® (M2 K1)
= (M1 ® M2) ® (K1 @ K1)

=M1 & M2

®
means
XOR

#36

“Cribs”

Know: C1, C2 (intercepted ciphertext)
C1®C2=M M2

Don’t know M1 or M2

- But, can make some guesses (cribs)
* SPRUCHNUMMER

« Sometimes allies moved ships, sent out bombers to help the
cryptographers get good cribs

Given guess for M1, calculate M2
M2 =C1® C2® M1

Once guesses that work for M1 and M2
Ki=M1®Cl=M2& C2

#37

Reverse Engineering Lorenz

« From the 2 intercepted messages, Col. John
Tiltman worked on guessing cribs to find M1
and M2: 4000 letter messages, found 4000
letter key K1

« Bill Tutte (recent Chemistry graduate) given
task of determining machine structure

- Already knew it was 2 sets of 5 wheels and 2
wheels of unknown function

- Six months later new machine structure likely to
generate K1

#38

Intercepting Traffic

 Set up listening post to intercept traffic
from 12 Lorenz (Fish) links

- Different links between conquered capitals

- Slightly different coding procedures, and
different configurations

» 600 people worked
on intercepting traffic

#39

Breaking Traffic

 Knew machine structure, but a different
initial configuration was used for each
message

» Need to determine wheel setting:
- Initial position of each of the 12 wheels
- 1271 possible starting positions

- Needed to try them fast enough to decrypt
message while it was still strategically valuable

|This is what you did for PS4 (except with fewer wheels) |

#40

Recognizing a Good Guess
« Intercepted Message (divided into 5
channels for each Baudot code bit)
L =2,272,2,72,77,7,...
z_; = ith bit of ciphertext is (ith bit of message) ®
with (ith bit of key)
key comes from all of the wheels (e.g., S-wheel, ...)

» Look for statistical properties
- How many of the z_;’s are 0?

@z)are0? 7%

Y2 (not useful)

- How many of (z

C,i+1

X is random part of key
(i.e., K-wheel)
S is not-truly-random
part from S wheels

Double Delta
ANZ.,=7,07

Combine two channels:
ANZ,,®AZ,= AM ,®AM,,

DAX ®AX,, =7 (key)

DAS, DAS,,
Why is AM,; @ A M,, > %

Message is in German, more likely following
letter is a repetition than random

WhyisAS, @ AS, > %
S-wheels only turn when M-wheel is 1

c,itl

> Yippee!

> 2 Yippee!

#42

Actual Advantage: Linguistics Using the Advantage

« Probability of repeating letters « If the guess of X is correct, should see higher
1
Prob[A M, ,®A M,,=0] ~ 0.614 than %2 of the double deltas are 0

9 . - » Try guessing different configurations to find
3'3/? ,Of German dTgraphs are repeating highest number of 0 double deltas
 Probability of repeating S-keys

e Problem:
Prob[A S, ®AS,;=0]- 0.73 # of double delta operations to try one config
Prob[AZ, ® AZ, D AX,DAX,,=0] = length of Z * length of X
=0.614*0.73 +(1-0.614) * (1-0.73) = for 10,000 letter message = 12 M for each setting
AMandSare0 AMandS are 1 * 7 @ per double delta
= 0.55 if the wheel settings guess is correct (0.5 otherwise) = 89 M ® operations
#43 #44

Homework

e Problem Set 4

 Study for Exam 1
- Out Soon

