
Sort Sort
ProceduresProcedures

andand
Quicker Quicker

SortingSorting

#2

One-Slide Summary
• g is in O(f) iff there exist positive constants c

and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

• If g is in O(f) we say that f is an upper bound
for g.

• We use Omega  for lower bounds and Theta
 for tight bounds.

• Knowing a running time is in O(f) tells you
that the running time is not worse than f.
This can only be good news.

• Some way to sort have different running
times.

#3

Outline
• Finish up “Magic”
• Administrivia: your views, voting
• Sorting: timing and costs
• Insertion Sort
• Better sorting?
• End early?

#4

Exam 1
• Handed out at end of class on Thu Oct 04,

due at the beginning of class Thu Oct 11
– You have one week, should take 2-4 hours

• Open Book - No PyCharm / Udacity Python
• Open TAs & Profs – No Friends
• Covers everything through Tue Oct 02

including:
– Lectures 1-11, Book Chapters 1-8 (etc.), PS 1-4

• Post on the forum if you want a review
session

#5

Time On Problem Sets: The Bad
– “I believe this PS3 has taken me over 10 hours to

complete, not including reading for class.”
– “I'd say this lab took around a total of just over 3

hours for me, which is not too bad I suppose.”

• Some people mentioned that they found the
PS long: 10 hours was the max mentioned
time.

– "One credit of laboratory work can equal one to four hours per week." - UVA Registrar
http://www.virginia.edu/registrar/about.html

– "a 3 hour course requires about 10 hours/week for the entire semester." - UVA Kinesiology
http://records.uva.acalog.com/preview_program.php?catoid=11&poid=1052&bc=1

– "a ratio of 4 clock hours per credit hour per week." - UVA Clinical Nursing
http://www.nursing.virginia.edu/media/NEW%20Student%20Handbook%20CNL%2007-08.pdf

– "Total contact hours for a course should account for readings, online time, outside preparation and
study. Total contact hours required per credit hour are as follows: 135 hours for a 3-credit course [9
hours a week for 15 weeks]." - UVA Syllabus Template
http://www.faculty.virginia.edu/bbcp/documents/Final_Syllabus_Template.doc #6

Time On Problem Sets: The Good
– “At least, personally, I could not have done this PS

without their help. Is that really what the problem
sets are supposed to be?”

• PS3 is one of the two hardest problem sets. Remember,
you are not expected to know or do it all.
– 86% of you had perfect coding scores on PS3. 89% on

PS2. You may be working too hard!

• PS Design: Open-Ended Grading, not Rote!
– Final problems allow us to distinguish between

superstars: currently you are all superstars!
– Example: Skipping convert_lcommands_to_curvelist

on PS3: 21/23
– Course curve: An “A” does not require perfect PS

#7

Tutoring and Hints
– “Is there any way to get one on one tutoring for

this type of problem set?”

• In the past, the ACM and ACM-W have offered
one-on-one tutoring. Send me (or the course
staff) email if you are interested; I will try to
set something up.
– “More hints written into PS if possible please?

This way I can work on it independently of TAs”

• I will add more hints on a optional links for
PS4 on. On your honor!

#8

Recall: Asymptotic Complexity

g is in O(f) iff: There are positive
constants c and n0 such that
g(n) ≤ cf(n) for all n ≥ n0.

g is in (f) iff: There are positive
constants c and n0 such that
g(n) ≥ cf(n) for all n ≥ n0.

g is in (f) iff: g is in O(f) and g is
in (f).

#9

Is our sort good enough?
Takes over 1 second to sort
1000-length list. How long
would it take to sort 1 million
items?

1s = time to sort 1000
4s ~ time to sort 2000

1M is 1000 * 1000

Sorting time is n2

so, sorting 1000 times as many items will take
10002 times as long = 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.
It would take 20,000 years to process a VISA transaction at this rate.

#10

Which of these is true?

• Our sort procedure is too slow for VISA
because its running time is in O(n2)

• Our sort procedure is too slow for VISA
because its running time is in (n2)

• Our sort procedure is too slow for VISA
because its running time is in (n2)

#11

Which of these is true?

• Our sort procedure is too slow for VISA
because its running time is in O(n2)

• Our sort procedure is too slow for VISA
because its running time is in (n2)

• Our sort procedure is too slow for VISA
because its running time is in (n2)

Knowing a running time is in O(f) tells you the running time is not
worse than f. This can only be good news. It doesn’t tell you anything
about how bad it is. (Lots of people and books get this wrong.)

#12

Liberal Arts Trivia: Art History
• Name the work shown

and its sculptor. The
artist is generally
considered the
progenitor of modern
sculpture: he departed
from mythology and
allegory and modeled
the human body with
realism, celebrating
individual character and
physicality.

#13

Liberal Arts Trivia: Chinese History
• This period of Chinese history roughly

corresponds to the Eastern Zhou dynasty (8th
century BCE to 5th century BCE). China was
feudalistic, with Zhou kings controlling only the
capital (Luoyang) and granting the rest as
fiefdoms to several hundred nobles (including
the Twelve Princes). As the era unfolded,
powerful states annexed smaller ones until a
few large principalities controlled China. By 6th
century BCE, the feudal system had crumbled
and the Warring States period had begun.

#14

Sorting Cost
def bf_sort(lst, cf): # simple sort
 if not lst: return []
 best = find_best(lst, cf)
 return [best] + bf_ort(remove(lst, best), cf)
def find_best(things, better):
 if len(things) == 1: return things[0]
 return pick_better(better, things[0], \
 find_best(things[1:], better)

The running time of best first sort is in Θ(n2) where n
is the number of elements in the input list.

Assuming the comparison function
passed as cf has constant running time.

#15

Divide and Conquer sorting?

• Best first sort: find the lowest in the list,
add it to the front of the result of sorting
the list after deleting the lowest.

• Insertion sort: insert the first element of
the list in the right place in the sorted
rest of the list.
– Let's write this together on the next slide!
– Hint: use/write helper function insert_one
– insert_one(2, [1,3,4], ascend) --> [1,2,3,4]

#16

insert-sort

def insert_sort(lst, cf):
 if not lst: return []
 return insert_one(lst[0], insert_sort(lst[1:], cf))

Try writing insert_one.
def insert_one(elt, lst, cf):

...

>>> insert_one(2, [1,3,5], ascend)
[1,2,3,5]

#17

insert_one
def insert_one(elt, lst, cf):
 if not lst: return [elt] # careful!
 if cf(elt, lst[0]): # are we there yet?
 return [elt] + lst # yes!
 else: # no, keep going!
 return [lst[0]] + insert_one(elt, lst[1:], cf)

insert_one(3, [1,2,4,5], cf) ->
[1] + insert_one(3, [2,4,5], cf) ->
[1] + [2] + insert_one(3, [4,5], cf) ->
[1] + [2] + [3] + [4,5] ->
[1,2,3,4,5]

#18

How much work is insert_sort?

How many times does
insert_sort evaluate insert_one?

def insert_sort(lst, cf):
 if not lst: return []
 return insert_one(lst[0], insert_sort(lst[1:], cf))

def insert_one(elt, lst, cf):
 if not lst: return [elt]
 if cf(elt, lst[0]):
 return [elt] + lst
 else:
 return [lst[0]] + \
 insert_one(elt, lst[1:], cf)

#19

How much work is insert-sort?

running time of insert-
one is ?

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

def insert_sort(lst, cf):
 if not lst: return []
 return insert_one(lst[0], insert_sort(lst[1:], cf))

def insert_one(elt, lst, cf):
 if not lst: return [elt]
 if cf(elt, lst[0]): return [elt] + lst
 return [lst[0]] + insert_one(elt, lst[1:], cf)

#20

How much work is insert-sort?

running time of insert-
one is in (n)

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

def insert_sort(lst, cf):
 if not lst: return []
 return insert_one(lst[0], insert_sort(lst[1:], cf))

def insert_one(elt, lst, cf):
 if not lst: return [elt]
 if cf(elt, lst[0]): return [elt] + lst
 return [lst[0]] + insert_one(elt, lst[1:], cf)

#21

How much work is insert-sort?

running time of insert-
one is in (n)

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

insert-sort has running time in (n2) where n is the
number of elements in the input list

def insert_sort(lst, cf):
 if not lst: return []
 return insert_one(lst[0], insert_sort(lst[1:], cf))

def insert_one(elt, lst, cf):
 if not lst: return [elt]
 if cf(elt, lst[0]): return [elt] + lst
 return [lst[0]] + insert_one(elt, lst[1:], cf)

>>> def reverse(lst): return lst[::-1]
>>> insert_sort(reverse(intsto(20), ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Requires 190 applications of <

>>> insert_sort(intsto(20), ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Requires 19 applications of <

>>> insert_sort(random_order_int_list_20, ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Requires 104 applications of <

>>> best_first_sort(intsto(20), ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Requires 210 applications of <

>>> best_first_sort(random_order_int_list_20,
ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Requires 210 applications of <

best-first-sort vs. insert-sort

• Both are (n2) worst case (reverse list)
• Both are (n2) when sorting a

randomly ordered list
– But insert-sort is about twice as fast

• insert-sort is (n) best case (ordered
input list)

Can we do better?

insert_one(88, [1,2,3,5,6,22,63,77,89,90],
 ascending)

Suppose we had procedures
first_half(lst)
second_half(lst)

that quickly divided the list in two halves?

#27

quicker-insert using halves

def quicker_insert(elt, lst, cf):
 if not lst: return [elt] # just like insert_one
 if len(lst) == 1: # handle 1 element by hand
 return [elt]+lst if cf(elt, lst[0]) else lst+[elt]
 front = first_half(lst)
 back = second_half(lst)
 if cf(elt, back[0]): # insert into front half
 return quicker_insert(elt, front, cf) + back
 Else: # insert into back half
 return front + quicker_insert(elt, back, cf)

#28

Evaluating quicker-sort
>>> quicker_insert(3, [1,2,4,5,7,8,9,10], ascend)
Front = [1,2,4,5]
Back = [7,8,9,10]
Is 3 < 7? Yes. So
return quicker_insert(3,[1,2,4,5],ascend) + [7,8,9,10]
Front = [1,2]
Back = [4,5]
Is 3 < 4? Yes. So
return quicker_insert(3,[1,2],ascend) + [4,5]
Front = [1]
Back = [2]
Is 3 < 2? No. So
Return [1] + quicker_insert(3,[2],ascend)
One element. Compare 3 and 2, return [2,3]

So final result is:
[1] + [2,3] + [4,5] + [7,8,9,10]

Every time we call quicker-
insert, the length of the list is
approximately halved!

def quicker_insert(elt, lst, cf):
 if not lst: return [elt] # just like insert_one
 if len(lst) == 1: # handle 1 element
 return [elt]+lst if cf(elt, lst[0]) else lst+[elt]
 front = first_half(lst)
 back = second_half(lst)
 if cf(elt, back[0]): # insert into front half
 return quicker_insert(elt, front, cf) + back
 else: # insert into back half
 return front + quicker_insert(elt, back, cf)

#29

How much work is quicker-sort?

Each time we call
quicker-insert, the size of
lst halves. So doubling
the size of the list only
increases the number of
calls by 1.

List Size # quicker_insert applications
1 1
2 2
4 3
8 4
16 5
32 6

def quicker_insert(elt, lst, cf):
 if not lst: return [elt] # just like insert_one
 if len(lst) == 1: # handle 1 element
 return [elt]+lst if cf(elt, lst[0]) else lst+[elt]
 front = first_half(lst)
 back = second_half(lst)
 if cf(elt, back[0]): # insert into front half
 return quicker_insert(elt, front, cf) + back
 else: # insert into back half
 return front + quicker_insert(elt, back, cf)

#30

Homework

• Problem Set 4
• Read Chapter 8 or Udacity 5
• Exam 1 Out Soon

