Sort

Quicker

\ W Lo
W RETURN OF THE YARD SALE TUB!
3 . o c

5 ¥
= T

Procedures
and

One-Slide Summary

g is in O(f) iff there exist positive constants ¢
and n, such that g(n) < cf(n) for all n>n,.

e If g is in O(f) we say that f is an upper bound
for g.

» We use Omega Q for lower bounds and Theta
® for tight bounds.

« Knowing a running time is in O(f) tells you
that the running time is not worse than f.
This can only be good news.

« Some way to sort have different running
times.

#2

Outline
« Finish up “Magic”
» Administrivia: your views, voting
« Sorting: timing and costs
* Insertion Sort
 Better sorting?

° End early? PartiallyClips| ——voH 1

Exam 1

» Handed out at end of class on Thu Oct 04,
due at the beginning of class Thu Oct 11
- You have one week, should take 2-4 hours

» Open Book - No PyCharm / Udacity Python
» Open TAs & Profs - No Friends

» Covers everything through Tue Oct 02
including:
- Lectures 1-11, Book Chapters 1-8 (etc.), PS 1-4
» Post on the forum if you want a review
session

#4

Time On Problem Sets: The Bad

- “I believe this PS3 has taken me over 10 hours to
complete, not including reading for class.”

- “I'd say this lab took around a total of just over 3
hours for me, which is not too bad | suppose.”

» Some people mentioned that they found the
PS long: 10 hours was the max mentioned
time.

- "One credit of laboratory work can equal one to four hours per week." - UVA Registrar
http://www.virginia.edu/registrar/about.html

- "a 3 hour course requires about 10 hours/week for the entire semester." - UVA Kinesiology
http://records.uva.acalog.com/preview_program.php?catoid=11&poid=1052&bc=1

- "aratio of 4 clock hours per credit hour per week." - UVA Clinical Nursing
http://www.nursing.virginia.edu/media/NEW%20Student%20Handbook%20CNL%2007-08. pdf

- "Total contact hours for a course should account for readings, online time, outside preparation and
study. Total contact hours required per credit hour are as follows: 135 hours for a 3-credit course [9
hours a week for 15 weeks]." - UVA Syllabus Template
http://www.faculty.virginia.edu/bbcp/documents/Final_Syllabus_Template.doc

#5

Time On Problem Sets: The Good

- “At least, personally, | could not have done this PS
without their help. Is that really what the problem
sets are supposed to be?”

» PS3is one of the two hardest problem sets. Remember,
you are not expected to know or do it all.

- 86% of you had perfect coding scores on PS3. 89% on
PS2. You may be working too hard!

» PS Design: Open-Ended Grading, not Rote!

- Final problems allow us to distinguish between
superstars: currently you are all superstars!

- Example: Skipping convert_lcommands_to_curvelist
on PS3: 21/23

- Course curve: An “A” does not require perfect PS

#6

Recall: Asymptotic Complexity

- “Is there any way to get one on one tutoring for g1s1n O(f) iff: There are pOS]twe
this type of problem set?” constants ¢ and »n, such that

¢ In the past, the ACM and ACM-W have offered g(n)<cfin) forall n>n
. — i Oo
one-on-one tutoring. Send me (or the course o . o
staff) email if you are interested; | will try to | g is in Q(f) iff: There are positive

Tutoring and Hints

set something up. constants ¢ and n, such that
- “More hints written into PS if possible please?
This way | can work on it independently of TAs” g(n) = cﬂn) for all n> y-

« | will add more hints on a optional links for g is in O () iff: g isin O(f) and g is

PS4 on. On your honor! in Q.
Is our sort good enough? Which of these is true?
Takes over 1 second to sort
1000-length list. How long « Our sort procedure is too slow for VISA
}’:g;#sd?]t take to sort 1 million because its running time is in O(n?)
1s = time to sort 1000 Our sort procedure is too slow for VISA

4s ~ time to sort 2000
because its running time is in Q(n?)

 Our sort procedure is too slow for VISA
because its running time is in ©(n?)

1M is 1000 * 1000
Sorting time is n?

s0, sorting 1000 times as many items will take
10002times as long = 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.
It would take 20,000 years to process a VISA transaction at this rate.

#9 #10

Which of these is true? Liberal Arts Trivia: Art History

« Name the work shown

) be . edr:J]t;\e]:1;10e . s and its sculptor. The
g. artist is generally
e Our sort procedure is too slow for VISA considered the
because its running time is in Q(n?) progenitor of modern
o Our sort procedure is too slow for VISA sculpture: he departed

from mythology and
allegory and modeled

Knowing a running time is in O(¥) tells you the running time is not the human body with
worse than f. This can only be good news. It doesn’t tell you anything . .
realism, celebrating

about how bad it is. (Lots of people and books get this wrong.) Soane
individual character and

1| physicality.

because its running time is in ©(n?)

Liberal Arts Trivia: Chinese History

» This period of Chinese history roughly
corresponds to the Eastern Zhou dynasty (8™
century BCE to 5™ century BCE). China was
feudalistic, with Zhou kings controlling only the
capital (Luoyang) and granting the rest as
fiefdoms to several hundred nobles (including
the Twelve Princes). As the era unfolded,
powerful states annexed smaller ones until a
few large principalities controlled China. By 6™
century BCE, the feudal system had crumbled
and the Warring States period had begun.

#13

Sorting Cost

def bf_sort(lst, cf): # simple sort

if not Ist: return []

best = find_best(lst, cf)

return [best] + bf_ort(remove(lst, best), cf)
def find_best(things, better):

if len(things) == 1: return things[0]

return pick_better(better, things[0], \

find_best(things[1:], better)

The running time of best first sort is in ®(n?) where n
is the number of elements in the input list.

Assuming the comparison function
passed as ¢f has constant running time.

#14

Divide and Conquer sorting?

 Best first sort: find the lowest in the list,
add it to the front of the result of sorting
the list after deleting the lowest.

« Insertion sort: insert the first element of
the list in the right place in the sorted
rest of the list.

- Let's write this together on the next slide!
- Hint: use/write helper function insert_one
- insert_one(2, [1,3,4], ascend) --> [1,2,3,4]

#15

insert-sort

def insert_sort(lst, cf):
if not Ist: return []
return insert_one(Ist[0], insert_sort(Ist[1:], cf))

Try writing insert_one.
def insert_one(elt, Ist, cf):

>>> insert_one(2, [1,3,5], ascend)
[1,2,3,5]

- =

#16

insert_one

def insert_one(elt, Ist, cf):
if not Ist: return [elt] # careful!
if cf(elt, Ist[0]): # are we there yet?
return [elt] + Ist # yes!
else: # no, keep going!
return [Ist[0]] + insert_one(elt, Ist[1:], cf)

insert_one(3, [1,2,4,5], cf) ->

[1] + insert_one(3, [2,4,5], cf) ->

[1] + [2] + insert_one(3, [4,5], cf) ->
[1] + [2] + [3] + [4,5] ->

[1,2,3,4,5]

#17

How much work is insert_sort?
def insert_sort(lst, cf):
if not Ist: return []
return insert_one(Ist[0], insert_sort(Ist[1:], cf))

def insert_one(elt, Ist, cf):
if not Ist: return [elt]
if cf(elt, Ist[0]):
retl.Jrn [elt] + Ist m““ﬁ?;“mo
else: _
return [Ist[O]] + \ 4
insert_one(elt, Ist[1:], cf)
How many times does
insert_sort evaluate insert_one?

How much work is insert-sort?

def insert_sort(lIst, cf):
if not Ist: return []
return insert_one(Ist[0], insert_sort(Ist[1:], cf))

def insert_one(elt, Ist, cf):
if not Ist: return [el{]
if cf(elt, Ist[0]): return [elt] + Ist
return [Ist[0]] + insert_one(elt, Ist[1:], cf)
How many times does insert-
sort evaluate insert-one?

n times (once for each element)

running time of insert-
oneis ?

#19

How much work is insert-sort?

def insert_sort(lst, cf):
if not Ist: return []
return insert_one(lIst[0], insert_sort(Ist[1:], cf))

def insert_one(elt, Ist, cf):
if not Ist: return [elf]
if cf(elt, Ist[0]): return [elt] + Ist
return [Ist[0]] + insert_one(elt, Ist[1:], cf)
How many times does insert-
sort evaluate insert-one?

ntimes (once for each element)

running time of insert-
one is in ©(n)

#20

How much work is insert-sort?

def insert_sort(lIst, cf):
if not Ist: return []
return insert_one(Ist[0], insert_sort(Ist[1:], cf))

def insert_one(elt, Ist, cf):
if not Ist: return [elf]
if cf(elt, Ist[0]): return [elt] + Ist
return [Ist[0]] + insert_one(elt, Ist[1:], cf)
How many times does insert-
sort evaluate insert-one?

ntimes (once for each element)

running time of insert-
one is in O(n)

Which is better?

e Is insert_sort faster than best_first_sort?

AccuPOP™ - Probability of Precipitation

51% 38% 32% B2% B1% 63% 113%
insert-sort has running time in ©(n?) where n is the et 00 PSP sPER
number of elements in the input list ';‘;2’; “a3%

#21 Tue #22

>>> def reverse(lst): return Ist[::-1]

>>> insert_sort(reverse(intsto(20), ascending)

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Requires 190 applications of <

>>> insert_sort(intsto(20), ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Requires 19 applications of <

>>> insert_sort(random_order_int_list_20, ascending)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Requires 104 applications of <

>>> pest_first_sort(intsto(20), ascending)
,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Requires 210 applications of <

>>> pest_first_sort(random_order_int_list_20,

ascending)

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Requires 210 applications of <

best-first-sort vs. insert-sort

» Both are ®(n?) worst case (reverse list)

e Both are ®(n?) when sorting a
randomly ordered list

- But insert-sort is about twice as fast

* insert-sort is ©(n) best case (ordered
input list)

Can we do better?

insert_one(88, [1,2,3,5,6,22,63,77,89,90],
ascending)

Suppose we had procedures
first_half(Ist)
second_half(lIst)

that quickly divided the list in two halves?

quicker-insert using halves

def quicker_insert(elt, Ist, cf):

if not Ist: return [elt] # just like insert_one

if len(Ist) == 1: # handle 1 element by hand
return [elt]+Ist if cf(elt, Ist[0]) else Ist+[eli]

front = first_half(Ist)

back = second_half(Ist)

if cf(elt, back[0]): # insert into front half
return quicker_insert(elt, front, cf) + back

Else: # insert into back half
return front + quicker_insert(elt, back, cf)

#27

Evaluating quicker-sort

>>> quicker_insert(3, [1,2,4,5,7,8,9,10], ascend)
Front =[1,2,4,5]
|E;63Ck< 7:[_;7&31&], def quicker_insert(elt, Ist, cf):
return quicker_insert(3,[1,2,4,5),ascend) + [7,8,9,10] if not Ist: return [elt] # just like insert_one
Front = [1,2] if len(lst) == 1: # handle 1 element
Back = [4,5] return [elt]+Ist if cf(elt, Ist[0]) else Ist+[elt]
Is 3 <47 Yes. So front = first_half(Ist)
back = second_half{lIst)
if cf(elt, back[0]): # insert into front half
return quicker_insert(elt, front, cf) + back
else: # insert into back half
return front + quicker_insert(elt, back, cf)

return quicker_insert(3,[1,2],ascend) + [4,5]
Front = [1]

Back = [2]

Is 3<2? No. So

Return [1] + quicker_insert(3,[2],ascend)
One element. Compare 3 and 2, return [2,3]

So final result is:
[1] +[2,3] + [4,5] + [7,8,9,10]

Every time we call quicker-

insert, the length of the list is
approximately halved!

#28

How much work is quicker-sort?

def quicker_insert(elt, Ist, cf):
if not Ist: return [elt] # just like insert_on
if len(Ist) == 1: # handle 1 element
return [elt]+Ist if cf(elt, Ist[0]) else Ist+[elt]
front = first_half(Ist)
back = second_half(Ist)
if cf(elt, back[0]): # insert into front half
return quicker_insert(elt, front, cf) + back

Each time we call
quicker-insert, the size of
Ist halves. So doubling
the size of the list only
increases the number of

calls by 1. else: # insert into back half
return front + quicker_insert(elt, back, cf)

List Size # quicker_insert applications

1 1

2 2

4 3

8 4

16 5

32 6

e

#29

Homework

e Problem Set 4
» Read Chapter 8 or Udacity 5
e Exam 1 Out Soon

#30

