Costs
and
Sheezewort
and
Growth

532. Achillea Ptarmica L.

Sneezewort

One-Slide Summary

» The basic recursive computation of Fibonacci can
take quite a while. There are faster ways.

» We can formally measure and evaluate the cost
of a computer program. We abstract away
details such as processor speed and instead
measure how the solving time increases as the
input increases.

« g is in O(f) iff there exist positive constants ¢
and n, such that g(n) < cf(n) for all n >n,.

e If g is in O(f) we say that f is an upper bound
for g.

#2

PS3 Attempts

» As of Wednesday, only 17 of you had
submitted anything for PS3.
- ... with a high student score of 18/23.

» Presumably the rest of you have allocated 13+

hours between now and Tuesday. :-)

- Starting problem sets in this class “at the last
minute” is the conceptual equivalent of Getting
Involved in a Land War in Asia.

#3

Outline

» Sneezewort and Fibonacci

e Cost of computing Fibonacci
 Cost of sorting

e Intro to Big-Oh Notation

=%|

 #iclearance

EXO FORCI
SENTAI FORTRS

69.98

Otiginal...... .99

S R
o

"V" shrubbery
by Andrew Jesien, Becky Elstad

After the Incident
by Ben Morrison and Liz Peterson

Robot Cav Man
by Jamie Jeon & Walter Borges

#5

» Achillea ptarmica is real.
e |t is “moste efficacious in the

Sneezewort

inflaming of the braine, and [is] 4
therefore much used in Confusing 8
and Befuddlement Draughts,
where the wizard is desirous of
producing hot-headedness and
recklessness.” 9

- Order of the Phoenix, p.18

» Sneezewort's pattern of

development displays the
Fibonacci sequence.

#6

Sneezewort Growth

- <f

First Time Unit

Second Time Unit

Offshoot

Could we model Sneezewort with PS3 code?

#7

Sneezewort Numbers

pink
by Jessica Geist, Ellen Clarke

#8

Fibo Results

Tracing Fibo

fibo(3
> fibo(3) I (ﬁi)om
1
3 fibo(4) I fibo(1)
1
>>> fibo(10) IZ
55 kR,
>>> fibo(60) v sl
Still working... o
At least we finished. by Rachel Lgﬁgulfygrr:?iv;ndrea Yoon
by Dmitriy Semenov and Sara Alspaugh
#9 #10
>.>> fibo(5) A right-wing Christmas - aWWWww...... yr
|f|b0(5) by Andrew Baker & Emily Lam 5=
foofd) AN Liberal Arts Trivia: History
| | fibo(2) ThN
| fbo(t) Fere g, This 20"-century American inventor is
1] e credited with the phonograph, the carbon
2 = . > .
Hflbo(2) %‘3“” telephone transmitter, the practical electric
}'31 To calculate fibo(5) we calculated: &~ light, and the phrase “Genius is one percent
[foa(s) RESE ; 3 hme. Ty inspiration, ninety-nine percent
1 fibo(2) 3times) o perspiration.” He fought against Nikola Tesla's
ool fibo(1) 2timesf °fmesEl alternating current in the so-called War of the
I |21 = 8 calls to fibo a C
; = fibo(B), interestingly ... : urrents.

How many calls to calculate fibo(60)?

#11

#12

Liberal Arts Trivia: Film Studies Liberal Arts Trivia: Physics {E{l& ‘\

e In this Oscar-nominated 2006 film, David

Bowie is almost torched by Thomas Edison's » Count Alessandro Antonio Anastasio Volta was
goons but invents a teleportation machine for a 19"-century Italian physicist. Volta studied
Wolverine so that he can defeat Batman in a what we now call capacitance, developing
magic trick competition because he thinks separate means to study both electrical
Batman killed his wife. potential V and charge Q, and discovering

o HEBEES, | ARE Y0 SURE | BROTHER | Yod DOVETING TD URTE TO BE RCCUSED OF
PRESS THE | THAS 15 900 | THOMBSES GET IN THE WA{
BUTTON AND | A GOOD (DEA? | OF MORE SCIENTIFIC AD-

that for a given object they are proportional.

DWPLICATE WCES WiTW YouR STUPD His experiments in “animal electricity”, in
ME ETHICAL QJES[\CNQ,'I ™S . . .
‘(“%‘l B, e which two different metals were connected in
1 ‘\-‘ \

series with frog's legs, eventually led to his
most famous discovery. What was it?

.V’———
u‘:?‘§

#14

fast_fibo Fast-Fibo Results
#1+1=2 >>> fast_fibo(10)
1+2=3 55
2+3=5 >>> g = time(); print fast_fibo(60); \
3+5=8 print time()-a
a + b = fibo(n) 1548008755920
def fast_fibo(n): 7.10487365723e-05 seconds
def fib he|per(a b |eft) The original fibo would take at least 2.5 Trillion applications.
. A » A 2.5 GHz computer does 2.5 Billion simple operations per
if left <= 0: second, so 2.5 Trillion applications operations take ~1000
return b seconds.
return fib helper(b a+b. left-1) Each application of fibo involves hundreds of simple
_)) - operations...

return fib_helper(1, 1, n-2)

#15 #16

The Earth's mass is 6.0 x 10"24 kg

>>> mass_of earth =6 * pow(10,24)

A typical rabbit's mass is 2.5 kilograms

>>> mass_of rabbit=2.5

>>> (mass_of rabbit * fast_fibo(60)) / mass_of earth
6.450036483e-013

>>> (mass_of_rabbit * fast_fibo(120)) / mass_of_earth
2.2326496895795693

According to Bonacci’s model, after less than 10
years, rabbits would out-weigh the Earth!
W &% &%
Dot Yor Uge Yo

FATICY

s “' " - -
i-‘r?‘ffe,.m; FEATIES

Broccoli Fallout by Paul DiOrio, Rachel Phillips
’Em@y%-

#17

Evaluation Cost

Actual running times

80,000,000

vary according to:

- How fast a processor
you have

- How much memory
you have

- Where data is located
in memory

- How hot it is

70,000,000

60,000,000

50,000,000

40,000,000

30,000,000 /

20,000,000 /
10,000,000

\\\\\

- What else is running

Moore’s “Law” — computing power doubles
- etc...

every 18 months

#19

Measuring Cost

» How does the cost scale -
with the size of the
input?

e If the input size increases
by one, how much longer

will it take?

« If the input size doubles,
how much longer will it
take?

Untitled
Nokomis McCaskill
Chris Hooe

#20

Cost of Fibonacci Procedures

def fast_fibo(n):

def fib :
ol ol def fib_helper(a, b, left)
return 1 if left <= 0:
return fibo(n-1) + fibo(n-2) return b

return fib_helper(b, a+b, left-1)
return fib_helper(1, 1, n-2)

Input fibo fast_fibo
m q mk

m+1 (m+t1)k

m+2 at least g* (m+2)k

#21

Cost of Fibonacci Procedures

def fast_fibo(n):

def fib :
o fibol) def fib_helper(a, b, left):
return 1 if left <= 0:
return fibo(n-1) + fibo(n-2) return b

return fib_helper(b, a+b, left-1)
return fib_helper(1, 1, n-2)

Input fibo fast_fibo
m q mk

m+1 q* (m+1)k

m+2 at least g° (m+2)k

® = (1 + (sqrt 5))/ 2 = “The Golden Ratio” ~ 1.618033988749895...
~ fast-fibo(61) / fast-fibo(60 = 1.618033988749895

#22

The Golden Ratio

R
A CEL

Parthenon

Nautilus Shell

#23

More Golden Ratios

Izla]a]s [el78]s olnilizlaialislie]ir]ie)
P R SEE ARES FROIRRE Y A MU
v | e G ey

% 4 i, 3

Sorting

>>> def ascending(x,y): return x -y

>>> sorted([5,2,4,1,3], ascending)

[1, 2, 3, 4, 5]

>>> def descending(x,y): returny - x

>>> sorted([5,2,4,1,3], descending)

[1, 2, 3, 4, 5]

>>> def longer(x,y): return len(x) - len(y)
>>> sorted([“allons”,”enfants”,”de”],longer)
[“de”, “allons”, “enfants”]

#25

“You're The Best Around”

def find_best(things, better):
if len(things) == 1: return things[0]
return pick_better(better, things[0], \
find_best(things[1:], better)

def pick_better(better, a, b):
return (a if better(a,b) else b)

def find_best(things, better):
return sorted(things, better)[0]

Which is faster and by how much?

#26

Simple Sorting T>“Q
« Can we use find_best to =g -, “‘\ﬁi
implement sort? 7 s

- Yes!

.%_

» Use find_best(lst) to
find the best _
« Remove it from the list gl
- Adding it to the answer

» Repeat until the list is
empty

3;%? A
]
)
N

e

,
/, o P o 7
*,.' — -,;‘ ko7

crazy blue tree

by Victor Malaret, Folami Williams

#27

Simple Sort

cf = comparison function
def sort(Ist, cf): # simple sort
If not Ist: return []
best = find_best(Ist, cf)
return [best] + sort(\
remove(lst, best), cf)

remove(lIst,x) = filter ...

eltI=x ...

#28

Sorting

def sort(Ist, cf): # simple sort
If not Ist: return []
best = find_best(Ist, cf)
return [best] + sort(\
remove(lst, best), cf)
def find_best(things, better):
if len(things) == 1: return things[0]
return pick_better(better, things[0], \
find_best(things[1:], better)

def pick_better(better, a, b):
return (a if better(a,b) else b)

How much work is sort?

#29

Sorting Cost
» What grows?
—n = the number of elements in (st

« How much work are the pieces?
find-best:
remove.

#30

Sorting Cost
» What grows?
—n = the number of elements in st

« How much work are the pieces?
find-best: work scales as n (increases by one)
remove: work scales as n (increases by one)

« How many times does sort evaluate
find-best and delete?

#31

Sorting Cost
» What grows?
—n = the number of elements in st

« How much work are the pieces?
find-best: work scales as n (increases by one)
remove: work scales as n (increases by one)

« How many times does sort evaluate
find-best and delete? n

e Total cost: scales as

#32

Sorting Cost
» What grows?
—n = the number of elements in st

« How much work are the pieces?
find-best: work scales as n (increases by one)
remove: work scales as n (increases by one)

« How many times does sort evaluate
find-best and delete? n

e Total cost: scales as n?

#33

Sorting Cost
def sort(lst, cf): # simple sort
if not st: return []
best = find_best(lst, cf)
return [best] + sort(remove(lst, best), cf)
def find_best(things, better):
if len(things) == 1: return things[0]
return pick_better(better, things[0], \
find_best(things[1:], better)

If we double the length of the list, the amount of
work approximately quadruples: there are twice as

many applications of find-best, and each one takes
twice as long

#34

Liberal Arts Trivia:
Medicine

« Nicolae Paulescu was a 20" century
physiologist and professor of medicine. He is
considered the true discoverer of hormone
that causes most of the body's cells to take up
glucose from the blood. His first experiments
involved an aqueous pancreatic extract
which, when injected into a diabetic dog,
proved to have a normalizing effect on blood
sugar levels. Name the hormone.

#35

Liberal Arts Trivia: Sailing

« Name the collection of apparatus through

which the force of the wind is transferred to
the ship in order to propel it forward - this
includes the masts, yardarms, sails, spars and
cordage.

Timing Sort

def find_best(things, better):
if len(things) == 1: return things[0]
rest = find_best(things[1:], better)
return things[0] if better(things[0], rest) else rest

def sort(lst, cf):
if not Ist: return []
best = find_best(Ist, cf)
Ist.remove(best) # tricky!
return [best] + sort(lst, cf)

def descending(x,y): return x >y

[9,8,7,6,5,4,3,2,1,0]
0.00014
0.00057
0.00234
0.00960

def time_sort(k):
a = time.time()
sort(range(k), descending)
return time.time() - a

Cherry Blossom
by Ji Hyun Lee, Wei Wang

print sort(range(10), descending)
print time_sort(20)
print time_sort(40)
print time_sort(80)
print time_sort(160)

#37

Timing Sort

35000
30000 , Mmeasured
times
25000
= 2
20000 = n*/500
15000

10000 /
5000 /
0

0 1000 2000 3000

Growth Notations

g€ O(f) (“Big-Oh”)
g grows no faster than /' (f'is upper bound)
cgc O(f) (“Theta”)

g grows as fast as 1

cgc Q) (“Omega”)

g grows no slower than /° (f'is lower bound)

(fis tight bound)

Which one would we most like to know?

#39

Meaning of O (“big Oh”)
g is in O() iff:

There are positive constants

c and n, such that

g(n) < cf(n)

for all n>n,.

- -i"i
HUNGRY ALL THE TIME?
Sootfe the savage badst (withaut coléry sticks)

O Examples

g is in O(f) iff there are positive constants
c and n, such that g(n) < ¢f(n) for all n > n,.

T-Mobile @Home Package
Is nin O (n?)?
Is 10n in O (n)?
Is n?in O (n)?

Get unlimited nationwide calling from your
home phone with T-Mobile @Home senice

$9.99 per month + $999,999.99 phone
price

More details »

O Examples

g is in O(f) iff there are positive constants
¢ and n, such that g(n) < ¢f(n) for all n > n,.

Isnin O (n?)? Yes, c=1and n=1 works.
Is 10n in O (n)? Yes, c=1/10 and n,=1 works.

Is n2in O (n)’7 No, no matter what ¢ we pick,

cn* > n for big enough n (n > ¢)

#42

Revenge of O Examples Revenge of O Examples

g is in O(f) iff there are positive constants
¢ and n, such that g(n) < ¢f(n) for all n > n,.

g is in O(f) iff there are positive constants
¢ and n, such that g(n) < ¢f(n) for all n > n,.

Is n+5in O (n?)? Yes, c=1and n=3 works.

Is n+5in O (n?)? ,
. Is #2-100 in O (n)? No, no matter what ¢ we pick,

Is n*-100 in O (n)?) en>-100 > n for big enough n.

Is n2in O (n')? Yes, ¢ =1 and n~=1 works.

Is n2in O (n¥)? Yes, c=2and n=77 works.

” Yes, ¢ =55 and n,=102 works.

Homework

» Course Book Chapter 7

- Has a formal notation for
this kind of analysis!

e Problem Set 3 due soon!

The Mask

by Zachary Pruckowski,
Kristen Henderson

#44

