
#1

Costs
and

Sneezewort
and

Growth

#2

One-Slide Summary
• The basic recursive computation of Fibonacci can

take quite a while. There are faster ways.
• We can formally measure and evaluate the cost

of a computer program. We abstract away
details such as processor speed and instead
measure how the solving time increases as the
input increases.

• g is in O(f) iff there exist positive constants c
and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

• If g is in O(f) we say that f is an upper bound
for g.

#3

PS3 Attempts

• As of Wednesday, only 17 of you had
submitted anything for PS3.
– ... with a high student score of 18/23.

• Presumably the rest of you have allocated 13+
hours between now and Tuesday. :-)
– Starting problem sets in this class “at the last

minute” is the conceptual equivalent of Getting
Involved in a Land War in Asia.

#4

Outline
• Sneezewort and Fibonacci
• Cost of computing Fibonacci
• Cost of sorting
• Intro to Big-Oh Notation

#5

After the Incident
by Ben Morrison and Liz Peterson

"V" shrubbery
by Andrew Jesien, Becky Elstad

Robot Cav Man
by Jamie Jeon & Walter Borges

#6

Sneezewort
• Achillea ptarmica is real.

• It is “moste efficacious in the
inflaming of the braine, and [is]
therefore much used in Confusing
and Befuddlement Draughts,
where the wizard is desirous of
producing hot-headedness and
recklessness.”
– Order of the Phoenix, p.18

• Sneezewort's pattern of
development displays the
Fibonacci sequence.

#7

Sneezewort Growth

First Time Unit Second Time Unit Offshoot

Could we model Sneezewort with PS3 code?

#8

Sneezewort Numbers

1

1

2

3

5

8?

13

pink
by Jessica Geist, Ellen Clarke

#9

Fibo Results
>>> fibo(2)
1
>>> fibo(3)
2
>>> fibo(4)
3
>>> fibo(10)
55
>>> fibo(60)
Still working…

At least we finished.
by Dmitriy Semenov and Sara Alspaugh

#10

Tracing Fibo
>>> (fibo 3)
| fibo(3)
| fibo(2)
| 1
| fibo(1)
| 1
|2
2

Purple Arrow
by Rachel Lathbury and Andrea Yoon

#11

>>> fibo(5)
|fibo(5)
| fibo(4)
| |fibo(3)
| | fibo(2)
| | 1
| | fibo(1)
| | 1
| |2
| |fibo(2)
| |1
| 3
| fibo(3)
| |fibo(2)
| |1
| |fibo(1)
| |1
| 2
|5
5

To calculate fibo(5) we calculated:
fibo(4) 1 time
fibo(3) 2 times
fibo(2) 3 times
fibo(1) 2 times

= 8 calls to fibo
= fibo(6), interestingly ...

How many calls to calculate fibo(60)?

5 times total

A right-wing Christmas - awwwwww......
by Andrew Baker & Emily Lam

#12

Liberal Arts Trivia: History

• This 20th-century American inventor is
credited with the phonograph, the carbon
telephone transmitter, the practical electric
light, and the phrase “Genius is one percent
inspiration, ninety-nine percent
perspiration.” He fought against Nikola Tesla's
alternating current in the so-called War of the
Currents.

#13

Liberal Arts Trivia: Film Studies
• In this Oscar-nominated 2006 film, David

Bowie is almost torched by Thomas Edison's
goons but invents a teleportation machine for
Wolverine so that he can defeat Batman in a
magic trick competition because he thinks
Batman killed his wife.

#14

Liberal Arts Trivia: Physics

• Count Alessandro Antonio Anastasio Volta was
a 19th-century Italian physicist. Volta studied
what we now call capacitance, developing
separate means to study both electrical
potential V and charge Q, and discovering
that for a given object they are proportional.
His experiments in “animal electricity”, in
which two different metals were connected in
series with frog's legs, eventually led to his
most famous discovery. What was it?

#15

fast_fibo
1 + 1 = 2
1 + 2 = 3
2 + 3 = 5
3 + 5 = 8
a + b = fibo(n)
def fast_fibo(n):
 def fib_helper(a, b, left):
 if left <= 0:
 return b
 return fib_helper(b, a+b, left-1)
 return fib_helper(1, 1, n-2)

#16

Fast-Fibo Results
>>> fast_fibo(10)
55
>>> a = time(); print fast_fibo(60); \
 print time()-a
1548008755920
7.10487365723e-05 seconds

The original fibo would take at least 2.5 Trillion applications.
A 2.5 GHz computer does 2.5 Billion simple operations per
second, so 2.5 Trillion applications operations take ~1000
seconds.
Each application of fibo involves hundreds of simple
operations…

#17

The Earth's mass is 6.0 x 10^24 kg
>>> mass_of_earth = 6 * pow(10,24)
A typical rabbit's mass is 2.5 kilograms
>>> mass_of_rabbit = 2.5
>>> (mass_of_rabbit * fast_fibo(60)) / mass_of_earth
6.450036483e-013
>>> (mass_of_rabbit * fast_fibo(120)) / mass_of_earth
2.2326496895795693

According to Bonacci’s model, after less than 10
years, rabbits would out-weigh the Earth!

#18

Broccoli Fallout by Paul DiOrio, Rachel Phillips

#19

Evaluation Cost
Actual running times
vary according to:
– How fast a processor

you have
– How much memory

you have
– Where data is located

in memory
– How hot it is
– What else is running
– etc...

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

Moore’s “Law” – computing power doubles
every 18 months

#20

Measuring Cost

• How does the cost scale
with the size of the
input?

• If the input size increases
by one, how much longer
will it take?

• If the input size doubles,
how much longer will it
take? Untitled

Nokomis McCaskill
Chris Hooe

#21

Cost of Fibonacci Procedures
def fast_fibo(n):
 def fib_helper(a, b, left):
 if left <= 0:
 return b
 return fib_helper(b, a+b, left-1)
 return fib_helper(1, 1, n-2)

def fibo(n):
 if n <= 2:
 return 1
 return fibo(n-1) + fibo(n-2)

m+1

m+2

 mkqm

fast_fibofiboInput

(m+1)k

(m+2)kat least q2

#22

Cost of Fibonacci Procedures
def fast_fibo(n):
 def fib_helper(a, b, left):
 if left <= 0:
 return b
 return fib_helper(b, a+b, left-1)
 return fib_helper(1, 1, n-2)

def fibo(n):
 if n <= 2:
 return 1
 return fibo(n-1) + fibo(n-2)

m+1

m+2

 mkqm

fast_fibofiboInput

(m+1)k

(m+2)kat least q2

q*Φ

Φ = (1 + (sqrt 5)) / 2 = “The Golden Ratio” ~ 1.618033988749895...
 ~ fast-fibo(61) / fast-fibo(60 = 1.618033988749895

#23

The Golden Ratio

Parthenon

Nautilus Shell

#24

More Golden Ratios

#25

Sorting

>>> def ascending(x,y): return x – y
>>> sorted([5,2,4,1,3], ascending)
[1, 2, 3, 4, 5]
>>> def descending(x,y): return y – x
>>> sorted([5,2,4,1,3], descending)
[1, 2, 3, 4, 5]
>>> def longer(x,y): return len(x) – len(y)
>>> sorted([“allons”,”enfants”,”de”],longer)
[“de”, “allons”, “enfants”]

#26

“You're The Best Around”

def find_best(things, better):
 return sorted(things, better)[0]

def find_best(things, better):
 if len(things) == 1: return things[0]
 return pick_better(better, things[0], \
 find_best(things[1:], better)

def pick_better(better, a, b):
 return (a if better(a,b) else b)

Which is faster and by how much?

#27

Simple Sorting
• Can we use find_best to

implement sort?
– Yes!

• Use find_best(lst) to
find the best

• Remove it from the list
– Adding it to the answer

• Repeat until the list is
empty

crazy blue tree
by Victor Malaret, Folami Williams

#28

Simple Sort

cf = comparison function
def sort(lst, cf): # simple sort
 If not lst: return []
 best = find_best(lst, cf)
 return [best] + sort(\
 remove(lst, best), cf)

remove(lst,x) = filter ... elt != x ...

#29

Sorting

How much work is sort?

def sort(lst, cf): # simple sort
 If not lst: return []
 best = find_best(lst, cf)
 return [best] + sort(\
 remove(lst, best), cf)

def find_best(things, better):
 if len(things) == 1: return things[0]
 return pick_better(better, things[0], \
 find_best(things[1:], better)

def pick_better(better, a, b):
 return (a if better(a,b) else b)

#30

Sorting Cost
• What grows?

– n = the number of elements in lst

• How much work are the pieces?
find-best:
remove:

#31

Sorting Cost
• What grows?

– n = the number of elements in lst

• How much work are the pieces?
find-best: work scales as n (increases by one)
remove: work scales as n (increases by one)

• How many times does sort evaluate
find-best and delete?

#32

Sorting Cost
• What grows?

– n = the number of elements in lst

• How much work are the pieces?
find-best: work scales as n (increases by one)
remove: work scales as n (increases by one)

• How many times does sort evaluate
find-best and delete? n

• Total cost: scales as

#33

Sorting Cost
• What grows?

– n = the number of elements in lst

• How much work are the pieces?
find-best: work scales as n (increases by one)
remove: work scales as n (increases by one)

• How many times does sort evaluate
find-best and delete? n

• Total cost: scales as n2

#34

Sorting Cost

If we double the length of the list, the amount of
work approximately quadruples: there are twice as
many applications of find-best, and each one takes
twice as long

def sort(lst, cf): # simple sort
 if not lst: return []
 best = find_best(lst, cf)
 return [best] + sort(remove(lst, best), cf)
def find_best(things, better):
 if len(things) == 1: return things[0]
 return pick_better(better, things[0], \
 find_best(things[1:], better)

#35

Liberal Arts Trivia:
Medicine

• Nicolae Paulescu was a 20th century
physiologist and professor of medicine. He is
considered the true discoverer of hormone
that causes most of the body's cells to take up
glucose from the blood. His first experiments
involved an aqueous pancreatic extract
which, when injected into a diabetic dog,
proved to have a normalizing effect on blood
sugar levels. Name the hormone.

#36

Liberal Arts Trivia: Sailing

• Name the collection of apparatus through
which the force of the wind is transferred to
the ship in order to propel it forward – this
includes the masts, yardarms, sails, spars and
cordage.

#37

Timing Sort
def find_best(things, better):
 if len(things) == 1: return things[0]
 rest = find_best(things[1:], better)
 return things[0] if better(things[0], rest) else rest

def sort(lst, cf):
 if not lst: return []
 best = find_best(lst, cf)
 lst.remove(best) # tricky!
 return [best] + sort(lst, cf)

def descending(x,y): return x > y

def time_sort(k):
 a = time.time()
 sort(range(k), descending)
 return time.time() - a

print sort(range(10), descending)
print time_sort(20)
print time_sort(40)
print time_sort(80)
print time_sort(160)

Cherry Blossom
by Ji Hyun Lee, Wei Wang

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
0.00014
0.00057
0.00234
0.00960

#38

Timing Sort

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000

= n2/500

measured
times

#39

Growth Notations

• g  O(f) (“Big-Oh”)
g grows no faster than f (f is upper bound)

• g  (f) (“Theta”)
g grows as fast as f (f is tight bound)

• g  (f) (“Omega”)
g grows no slower than f (f is lower bound)

Which one would we most like to know?

#40

Meaning of O (“big Oh”)

g is in O(f) iff:
There are positive constants
c and n0 such that

g(n) ≤ cf(n)
for all n ≥ n0.

#41

 O Examples

Is n in O (n2)?

Is 10n in O (n)?

Is n2 in O (n)?

g is in O(f) iff there are positive constants
c and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

#42

 O Examples

Is n in O (n2)? Yes, c = 1 and n0=1 works.

Is 10n in O (n)? Yes, c = 1/10 and n0=1 works.

Is n2 in O (n)? No, no matter what c we pick,
cn2 > n for big enough n (n > c)

g is in O(f) iff there are positive constants
c and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

#43

Revenge of O Examples

Is n+5 in O (n2)?

Is n2-100 in O (n)?

Is n2 in O (n3)?

g is in O(f) iff there are positive constants
c and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

#44

Revenge of O Examples

Is n+5 in O (n2)?

Is n2-100 in O (n)?

Is n2 in O (n3)?

g is in O(f) iff there are positive constants
c and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

Yes, c = 1 and n0=3 works.

No, no matter what c we pick,
cn2-100 > n for big enough n.

Yes, c = 1 and n0=1 works.
Yes, c = 2 and n0=77 works.
Yes, c = 55 and n0=102 works.

#45

Homework

• Course Book Chapter 7
– Has a formal notation for

this kind of analysis!

• Problem Set 3 due soon!

The Mask
by Zachary Pruckowski,

Kristen Henderson

