FROM THE MAKERS OF THE BLOGOSPHERE,
BLOG6 CUBE, AND BLOGODROME COMES

the Blogofractal

One-Slide Summary

rigMashe Monkes sous | ‘g o T K ﬂ!ai?
16 o 1 ST 25 eyt saying on Kos . i)
L-System %JWFF ggﬁmﬂfff Tt 3| © Recursive transition networks and Backus-Naur Form
FW&% Dbcrarod is & e upsel GbooT Coparaht Tous. context-free grammars are equivalent formalisms for
oo Sped 9 4 o s [T o] ifvi)
Fractals F ot e § i’% §§i s!)ec1fy1ng for'mal Fanguages
& & |23 (omments (O) L SeizE| find_closest is quite powerful. Problem sets?
< | o u:?i .
o [Check oot fhs vid of T Smrr £ 2.«?% » L-system fractals are based on a rewriting system that
Procedure S | Zielfegore b it s e TG 38132 || is very similar to BNF grammars.
. _ g;‘_-q Nouvam 3012' : R o= 58 .))
Practlce H H.mml D',Yb;:"r"’q?“ﬁ‘mj,m,w 1| * We can practice our CS knowledge up to this point to
é: i e ‘:“""‘ cimiend | solve problems by writing recursive procedures. (It
&8 cs) col_foc_meehnd irls. S \2 |Moderation: +1 Sassy '
% ﬂzm":?:q;mi ff [k SSiog] | WoN't take too long.)
A s | 22 o ; }:JIRONYT
9 [EMETwe]e gm S iiswn%:
b '_—s'g- 1S |o> S| &5l
i§§%§>§ﬂ@aw§z L HE
e m R itE HE
Aclist] (% ~35/5 2|8 o e
<31-%|Z Blogodrume [& 4.2 i x,‘zo.osﬁ_l #2
Outline Recursive Transition Networks

« Briefly: Recursive Transition Networks
- vs. Backus-Naur Form Grammars
» Problem Sets
- Revenge of find_closest
» PS3 L-System Fractals
« Solving Problems
- Problem Representation
- Important Functions

#3

ORNATE NOUN

1

ADJECTIVE
/

—

ARTICLE NOUN

ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN

ADJECTIVES := ADJECTIVE ADJECTIVES

ADJECTIVES :=¢

OPTARTICLE = ARTICLE

OPTARTICLE =¢ Recall: the two notations

are equivalent.

#4

find_closest live demo

 Let's code it together now in PyCharm.
find_closest(goal, lst, dist)

e Hint: let's make test cases first.

#5

Problem Sets

» Not just meant to review stuff you should
already know
- Get you to explore new ideas
- Motivate what is coming up in the class

« The main point of the PSs is learning, not
evaluation

- Don’t give up if you can’t find the answer in
the book (you won’t solve many problems this
way)

- Do discuss with other students
- (This is why they are difficult.)

#6

PS2: Question 1

1.i. len([1,2,3][0])
= len(1)
= error: 1 is not a list!

1.q. map(len,[[1,2,3], [4,5], [6]])
= [len([1,2,3]), len([4,5]), len([6])]
= [3,2, 1]

#7

PS2: Question 4: Creativity

def seq_comp(lst):
if not Ist: return []
return [nuc_comp(lst[0])] + seq_comp(lst[1:])

def seq_comp(lst):
return map(nuc_comp, lst)

def seq_comp(lst):
return [nuc_comp(nuc) for nuc in (st]

#8

Liberal Arts Trivia:
Latin American Studies

« This important leader of Spanish America's
successful struggle for independence is
credited with decisively contributing to the
independence of the present-day countries of
Venezuela, Colombia, Ecuador, Peru,
Panama, and Bolivia. He defeated the Spanish
Monarchy and was in turn defeated by
tuberculosis.

#9

Liberal Arts Trivia: Media Studies

« This 1988 book by Herman and Chomsky presented the seminal

“propaganda model”, arguing that as news media outlets are run
by corporations, they are under competitive pressure. Consider the
dependency of mass media news outlets upon major sources of
news, particularly the government. If a particular outlet is in
disfavor with a government, it can be subtly 'shut out’, and other
outlets given preferential treatment. Since this results in a loss in
news leadership, it can also result in a loss of viewership. That can
itself result in a loss of advertising revenue, which is the primary
income for most of the mass media (newspapers, magazines,
television). To minimize the possibilities of lost revenue,
therefore, outlets will tend to report news in a tone more
favorable to government and business, and giving unfavorable news
about government and business less emphasis.

#10

PS3:
Lindenmayer System Fractals

| LSystem Plant (5 ~5}

#11

L-Systems

CommandSequence ::= [CommandList]
CommandlList ::= Command CommandList
CommandList ::=

Command ::= F

Command ::= RAngle

Command ::= OCommandSequence

#12

CommandSequence ::= [CommandList]
CommandList ::= Command CommandList

L- Syste m CommandList ::= L

.. Command ::=F
ReWI'l t] ng Command ::= RAngle

Command ::= O0CommandSequence

Start: [F]
Rewrite Rule:
F — [F O[R30 F] F O[R-60 F] F]

Work like BNF replacement rules,

except replace all instances at once! Level O Level 1
Start: [F] F - [F O[R30 F] F O[R-60 F] F]
Why is this a better model for biological systems? [F]

[F O[R30 F] F O[R-60 F] F]

#13

The Great
Lambda Tree
of Ultimate
Knowledge
and Infinite
Power

/
hd %%%

Level 2 Level 3

(Level 5 with color)

#15 #16

Previous CS 1120 Students: Previous CS 1120 Students:

Tie Dye by Bill Ingram

Tree Outside My Window

Rose Bush by Jacintha Henry and Rachel Kay A Heart

#17 #18

PS3 - Fractals

« In addition to completing the problem set,
each team will submit its prettiest fractal.
» The class will then vote for favorites, and
the authors of the favorites will receive
extra credit.
« No Photoshop, etc. All PS3.
- You just change the rules:
F — [F O[R30 F] F O[R-60 F] F] # one fractal
*F — [O[R60 F] F F O[R45 F]] # a new one!

#19

Procedure Practice

e For the rest of this class, we will be
practicing writing recursive procedures
together.

» Write a procedure count-fives that takes as
input a list of numbers. It returns the number
of fives contained in its input list.

- count_fives([1, 2, 3, 4, 5,]) -> 1
- count_fives([5, -5, 5, 7]) -> 2
- count_fives([]) -> 0
- count_fives([8, 6,7,5,3,0,9]) ->1

#20

Hints
Remember our strategy!
Be optimistic!
- Assume that you can write “count_fives”
- So the recursive case will work out
Identify the smallest input you can solve
- The base case
How would you combine answers
- From the current call (usually Ist[0])
- And the result of the recursive call (on Ist[1:])
Be creative! There are usually many solutions.

#21

Three versions of count_fives
def count_fives(lst):
if not Ist: return 0
if Ist[0] == 5: return 1 + count_fives(lst[1:])
return count_fives(lst[1:])

All work fine!
How are they

def count_fives(Ist): different?

if not Ist: return 0
return (1 if lst[0] == 5 else 0) + count_fives(lst[1:])

def count_fives(lst):

return len(filter(lambda x : x == 5, st)) 422

Liberal Arts Trivia: Medicine

This vector-borne infectious disease is caused
by protozoan parasites. It is widespread in
tropical regions, such as sub-Saharan African.
Each year there are about 515 million cases of
it, killing between one and three million
people. No formal vaccine is available. Classic
symptoms include sudden coldness followed
by rigor and then fever and sweating.

#23

Liberal Arts Trivia: Cognitive
Psychology

» This American psychologist coined the term
Cognitive Psychology in his late 1960's book of
the same name. He was critical of linear
programming models of psychology, felt that
psychology should address everyday concerns,
and respected the direct perception theories
of J.J. And Eleanor Gibson. He headed the
APA task force that reviewed The Bell Curve.

#24

Liberal Arts Trivia: Accounting

« In this bookkeeping system, each transaction
is recorded in at least two accounts. Each
transaction results in one account being
debited and another account being credited,
with the total debits equal to the total
credits. Luca Pacioli, a monk and collaborator
of Leonardo da Vinci, is called the “father of
accounting” because he published a usable,
detailed description of this system.

#25

contains

» Write a procedure contains that takes two
arguments: an element and a list. It returns
True if the list contains the given element,
False otherwise.

- contains(5, [1, 2, 3, 4]) -> False
- contains(5, [2, 3, 4, 5]) -> True
- contains([], [1, 2, 3]) -> False
- contains([], [1, 2, [1]) -> True
- contains(1, [2, [], 1]) -> True
- contains(3, []) -> False

#26

contains explained

def contains(elt, lst):
if not st: return False
elif lst[0] == elt: return True
else: return contains(elt, (st[1:])

All work fine!
How are they
different?

def contains(elt, lst):
if not st: return False
return (Ist[0] == elt) or contains(elt, lst[1:])

def contains(elt, (st):

return filter(lambda x : x == elt, lst) !=[] 27

common_elt

» Write a procedure common_elt that takes
two lists as arguments. It returns True if there
is a common element contained in both lists,
False otherwise.

- common_elt([1, 2, 3], [3, 4, 5]) -> True
- common_elt([1, 2, 3], [4, 5, 6]) -> False
- common_elt([1, 2], [0, 0,0, 1]) -> True
- common_elt([1], []1) -> False
- common_elt([], [1,2,3]) -> False
- common_elt([], [1) -> False

e Hint: You can use contains.

#28

common_elt?

def common_elt(lst1, lst2)

if not Ist1: return False All work!
elif contains(lst1[0], lst2): return True How are they
different?

else: return common_elt(lst1[1:], lst2)

def common_elt(lst1, [st2)
if (not lst1) or (not lst2): return False
return (Ilst1[0] == lst2[0]) or common_elt(lst1,lst2[1:]) or \
common_elt(lst1[1:], lst2) # this version is super slow!

def common_elt(lst1, lst2):
return filter(lambda e1 : contains(e1, lst2), lst1) =[]
#29

zero2hero

» Write a procedure zero2hero that takes as
input a list of strings. It returns the same list
in the same order, but every element that
used to be “zero” is now “hero”.

- zero2hero([“a”, “zero”, “b”, “jercules”])
b”, “jercules”]

-> [‘(a”’ ‘(hero!i’ [13
- zeroZhero([“zorro”])
-> [“zorro”]
- zero2hero([“zero”, “zero”, “one”, “zero”])

> [l(herol)’ “herol)’ “One"’ “hero”]

#30

zeroZ2hero

def zero2hero(lst):
if not Ist: return []
if Ist[0] == “zero”: return [“hero”] + zero2hero(lst[1:])
return [lst[0]] + zeroZhero(lst[1:])

All work!
How are they

def zero2hero(lst): different?

if not Ist: return []
return [“hero” if lst[0] == “zero” else lst[0]] + \
zero2hero(Ist[1:])

def zero2hero(lst):
return [“hero” if x == “zero” else x for x in Ist]

#31

tiny_squares

» Write a procedure tiny_squares that takes as
input a list of numbers. It returns a list of the
squares of those numbers (in the same order),
but any square above 100 is not included in
the output.

- tiny_squares([8, 9, 10, 11, 12])
- [64, 81, 100]

- tiny_squares([-2, 12, 4, 77, 5])
. [4, 16, 25]

- tiny_squares([3, 2, 1, 100])
. [9, 4, 1]

#32

def tiny_squares(lst): tiny_squares
if not Ist: return []
if abs(lst[0]) <= 10:

return [lst[0] * Ist[0]] + tiny_squares(lst[1:])

return tiny_squares(lst[1:])
All work!
How are they

def tiny_square(lst): different?

return map(lamba x : x * x, \
filter(lambda y : abs(y) <= 10, Ist))

def tiny_squares(lst):
return [x*x for x in st if x*x <= 100] # so awesome!

#33

every

» Write a procedure every that takes two
elements, a predicate and a list. (A predicate
is a function that takes an element and
returns True or False.) The procedure every
returns True if the predicate returns True on
each one of its elements. It returns False if
even one element does not pass the test. On
the empty list, every returns True.

- every(lambda (x) :(x >3), [4,5,6]) -> True
- every(lambda (x) :(x > 3), [9,1,1]) -> False
- every(lambda (x) :(x == 3), [3,3]) -> True
- every(lambda (x) :(x <y), [] -> True

#34

every heartbeat belongs to you!
def every(pred, lst):
if not Ist: return True
if pred(lst[0]): return every(pred, lst[1:])

return False All work!

How are they

def every(pred, lst): different?

if not Ist: return True
return pred(lst[0]) and every(pred,lst[1:])

def every(pred, lst):
return len(filter(pred,lst)) == len(lst)

#35

count_false
« Write a function count_false that takes two
arguments: a predicate and a list. It returns
the number of elements in the list for which
the predicate returns False.
- count_false(lambda x: x > 3, [1,2,3,4,5,6,7,8,9,10])
.3
- count_false(lambda x: x > 3, [-1, -2, -3, -4])
4
- count_false(lambda x: x == “a”, [“a”, “b”, “b”, “a”])
.2
- count_false(lambda x: x == “a”, [])
<0

#36

count_false | | Allwork! Questions

How are they

def count_false(pred, lst): different?
if not lst: return 0 » We're more or less done with procedure
if pred(lst[0]): return count_false(pred, lst[1:]) practice in class.
return 1 + count_false(pred, Ist[1:]) » Test questions may look a lot like this.
« If you're still having trouble with these, come
def count_false(pred, Ist): see Wes or a TA. We'll make up problems for
return len(filter(lambda x : not pred(x), lst)) you to practice and go over writing recursive
return len([x for x in st if not pred(x)]) procedures with you.

« Time permitting, ask me anything now.
def count_false(pred, (st):

return len(lst) - len(filter(pred, lst))

#37 #38

Homework

e Problem Set 3
- Reading!

#39

