List Recursion Examples &
Recursive Procedures

#1

One-Slide Summary

» Recursive functions that operate on lists have a
similar structure. list_cruncher is a higher-order
function that can be used to implement many
others.

 Decisions in a function can be abstracted out by
adding a function argument. For example,
find_closest_number is just find_closest plus a
function defining what a close_number is.

» The Fibonacci numbers are a recursively-defined
sequence.

» Almost all music uses a stack structure: starts on the
tonic, repeats similar patterns in a structured way,

ends on the tonic. w2

Outline

» map and filter
e list_cruncher

« find_closest_number
- Reminder: procedure definition strategy!

e find_closest
e Fibonacci numbers

e Recursive Transition Networks
- vs. Backus-Naur Form Grammars

e Musical Harmony

#3

[x*x for xin [1,2,3,4,5] if is_odd(x)]
m”

#4

Vg
4 Map and Filter Combined

[x*xforxin[1,2,3,4,5] if is_odd(x)]
[1,9,25]

[x/3 for xin [11,22,33,44] if is_odd(x+1)]
m

#5

[x*xfor xin[1,2,3,4,5] if is_odd(x)]
[1,9, 25]

[x/3 for xin [11,22,33,44] if is_odd(x+1)]
[7,14]

[transform for name in list if predicate]
[map for elt in list if filter]

#6

Similarities and Differences

def map(work, Ist): def sumlist(lst):
if not Ist: if not Ist:
return [] return 0

return [work(Ist[0])] +\
map(work,lst[1:])

return Ist[0] +\
sumlist(Ist[1:])

#7

Similarities and Differences

def map(work, Ist): def sumlist(lIst):
if not Ist: if not Ist:
return [] return 0

return [work(Ist[0])] +\
map(work,lst[1:])

return I[st[0] +\
sumlist(Ist[1:])

def list_cruncher(..., Ist):
if not Ist:
return base_result
return combine(lst[0], list_cruncher(..., Ist[1:]))

#8

How could this work?

» | want to crunch all the lists. How would | get
started? o~
o

#9

One Ring To Rule Them All

def list_cruncher(base, proc, combine, Ist):
if not Ist:
return base
return combine(proc(lst[0]), \
list_cruncher(base,proc,combine,Ist[1:])

def sumlist(lst):
return list_cruncher(0, lambda (x) : x, \
lambda y,z : y+z, lst)

#10

One Ring To Rule Them All

def list_cruncher(base, proc, combine, Ist):
if not Ist:
return base
return combine(proc(lst[0]), \
list_cruncher(base,proc,combine,Ist[1:])

def map(workfun, lst):
return list_cruncher([], workfun, \
lambda y,z : [y]+z, lst)

#11

Crunchy Center Challenge

def list_cruncher(base, proc, combine, Ist):
if not Ist:
return base
return combine(proc(Ist[0]), \
list_cruncher(base,proc,combine,lst[1:])

def length(lst):
if not lst: return 0

return 1 + length(lst[1:])

How can we define
length in terms of
list_cruncher?

#12

Crunchy Center Challenge

def list_cruncher(base, proc, combine, Ist):
if not Ist:
return base
return combine(proc(lst[0]), \
list_cruncher(base,proc,combine,Ist[1:])

def length(lst):
return list_cruncher(0, lambda x : 1, \
lambda y,z: y+z, Ist)

#13

Python Elegance Corner

def mymin(a,b):
ifa<b:
return a
else:
return b

def mymin(a,b):
return a if a<b else b

e These are the same! Both are full credit!

#14

Python Elegance Corner 2

>>> (8if 1 >5else 2) +3

5

>>> foo = lambda x : 0 if x == 5 else x
>>> foo(4)

4

>>> foo(5)

0

>>> foo(6)

6

#15

Crunchy Center Rematch

def list_cruncher(base, proc, combine, Ist):
if not Ist:
return base
return combine(proc(lst[0]), \
list_cruncher(base,proc,combine,Ist[1:])

How can we define

filter in terms of
list_cruncher?

Hint: [x] if pred(x) else []

def filter(pred, lst):
if not lst: return []
if pred(lst[0]): return [lst[0]] + filter(pred,lst[1:])
return filter(pred,lst[1:])

#16

list_cruncher crunches filter!

def list_cruncher(base, proc, combine, Ist):
if not Ist:
return base
return combine(proc(lst[0]), \
list_cruncher(base,proc,combine,Ist[1:])

def filter(pred, lst):
return list_cruncher([], lambda x : \
[x] if pred(x) else [], lambda y,z: y+z, Ist)

#17

Liberal Arts Trivia: Drama

e In this 1948 play by Samuel Beckett has been

called “the most significant English-language
play of the 20" century”. The minimal setting
calls to mind “the idea of the ‘lieu vague’, a
location which should not be particularised”,
and the play features two characters who
never meet the title character.

#18

Liberal Arts Trivia: History find-closest-number

o At the height of its power, in the 16" and 17%
century, this political organization spanned
three continents. It controlled much of
Southeastern Europe, the Middle East and
North Africa, and contained 29 provinces and
multiple vassal states. Noted cultural
achievements include architecture (vast inner ?;;fi“d—Close“—”“mber“50’ [101,110,120,157,340,588])
spaces confined by seemingly weightless yet

e The function find_closest_number takes two
arguments. The first is a single number called
the goal. The second is a non-empty list of
numbers. It returns the number in the input
list that is closest to the goal number.

>>> find_closest_number(12, [4,11,23])

massive domes, harmony between inner and (A B
outer spaces, articulated light and shadow, g find_closest_number(12, [95]) D e
etc.), classical music, and cuisine.

#19 #20

Recall The Strategy! find-closest-number hint
Be optimistic! One Approach for the Recursive Case:
Assume you can define: You have two possible answers: the
. current car of the list and the result of
find_closest_number(goal, numbers)

the recursive call. Compare them both
against the goal number, and return the
one that is closer.

that finds the closest number to goal
from a small list of numbers.

What if there is one more number?

Can you write a function that finds the
closest number to match from the first
number and the other numbers?

#21

Optimistic Function Defining Recursive Procedures

def find_closest_number(goal, numbers):

2. Think of the simplest version of the
base case missing for now!

problem (almost always []), something
if abs(goal - numbers[0]) < abs(goal - \ you can already solve. (base case)
find_closest_number(goal,numbers[1:])):

return numbers[0]
else:

Is [] the base case for
return find_closest_number(goal, humbers[1:])

find_closest_number?

#23 #24

find_closest_number defined!

def find_closest_number(goal, numbers):

if len(numbers) == # base case
return numbers[0]

if abs(goal - numbers[0]) < abs(goal - \

find_closest_number(goal,numbers[1:])):

return numbers[0]

else:
return find_closest_number(goal, humbers[1:])

return the only element

#25

Python Interactions

>>> def find_closest_number(goal, numbers):
if len(numbers) == 1: # se
return numbers[0] eturn the onl

- numbers[0]) < abs(goal -\
find_closest_number(goal,numbers[1:])):

base case
element

if abs(goal

return numbers[0]
else:
return find_closest_number(goal, numbers[1l:])

>>>

157

>>>

1

>>>

find_closest_number(150, [101, 110, 120, 157, 340, 588])
find_closest_number(0, [1])

find_closest_number(0, [])
Traceback (most recent call last):

File "<console>", line 1, in <module>

File "<console>", line 4, in find_closest_number
IndexError: 1list index out of range

ReportManager x|
Error Retrieving values in VB App.
Either you didn't enter the data properly, or the developer for this screwed up royally. I'm leaning towards ‘A",

#26

Generalizing find-closest-number

» How would we implement
find_closest_number_without_going_over?
» What about find_closest_word?

HOW CAN FREE WiLL
COEXIST WIiTH DIVINE
PRECRDINATION?

IF BATMAN DIED,
WoULD THE JOKER
BE HAPPY?

Go DEEP.

Too DEEP.

\

#27

Generalizing find-closest-number

« How would we implement
find_closest_number_without_going_over?
« What about find_closest_word?

e The “closeness” metric should be a
procedure we pass in!

#28

find_closest defined!

def find_closest(goal, lst, closeness):

if len(lst) == # base case
return (st[0] # return the only element

if closeness(goal, Ist[0]) < closeness(goal, \

find_closest(goal, lst[1:], closeness)):

return st[0]

else:
return find_closest(goal, lst[1:], closeness)

How can we implement find_closest_number
using find_closest?

#29

Using find_closest

def find_closest_number(goal, numbers):
return find_closest(goal, numbers, \
lambda a, b : abs(a-b))

def find_closest_below(goal, nhumbers):

return find_closest(goal, numbers, \
lambda a, b: a-b if a >= b else maxint)

#30

Duplicate Work?

def find_closest(goal, lst, closeness):

if len(lst) == # base case
return (st[0] # return the only element

if closeness(goal, Ist[0]) < closeness(goal, \

find_closest(goal, lst[1:], closeness)):

return (st[0]

else:
return find_closest(goal, lst[1:], closeness)

How can we avoid
evaluating find_closest twice?

#31

Helper Procedures

def pick_closer(a, b, closeness):
return a if closeness(a) < closeness(b) else b

def find_closest(goal, Ist, closeness):
if len(lst) == # base case
return st[0] # return the only element
return pick_closer(lst[0], \
find_closest(goal, st[1:], closeness), \
closeness)

Where have we seen
something like this before?

#32

Photomosaics!

def pick_closer(a, b, closeness):
return a if closeness(a) < closeness(b) else b

def find_closest(goal, lst, closeness):
if len(lst) == # base case
return (st[0] # return the only element
return pick_closer(lst[0], \
find_closest(goal, Ist[1:], closeness), \

closeness) find_best_match from PS1 is
just find_closest using closer_color
as closeness!

#33

Liberal Arts Trivia: Philosophy

» This branch of philosophy, which Aristotle
called “First Philosophy”, investigates
principles of reality transcending those of any
particular science. It is concerned with
explaining the ultimate nature of being and
the world (e.g., determinism and free will,
mind and matter, space and time). Its modern
name comes from the fact that Aristotle’s
chapters about it were placed “beyond” his
chapters on matter and force.

#34

Liberal Arts Trivia: Film Studies

» Born in 1965 to Muslim parents, this Indian
actor has starred in flims such as Kuch Kuch
Hota Hai, Kal Ho Naa Ho, Veer-Zaara, and
Devdas. In 2008, Newsweek named him one of
the 50 most powerful people in the world. He
has replaced Amitabh “Big B” Bachchan as the
host of Kaun Banega Crorepti, and has won
India’'s Padma Shri, a life-sized wax statue at
Madame Tussaud's, and the French
government's Ordre des Arts et des Lettres.

#35

Liberal Arts Trivia: Painting
« Name this 1930 oil-

on-beaverboard
painting by Grant
Wood. It is one of the
most familiar images
of 20" century
American art and has §
achieved an iconic
status.

.‘

7
7K N
7 7l ‘ "‘ \ /

[N

GEB Chapter V

Consider the optional-optional reading!
You could spend the rest of your life just
studying things in this chapter (25 pages)!

— Music Harmony

— Stacks and Recursion

- Theology

— Language Structure

— Number Sequences

- Chaos

— Fractals (PS3 out today. Start early. Why?)
— Quantum Electrodynamics (later lecture)
— DNA (later lecture)

- Sameness-in-differentness

— Game-playing algorithms (later lecture)

#37

Fibonacci’s Problem
Filius Bonacci, 1202 in Pisa:

Suppose a newly-born pair of rabbits, one male, one
female, are put in a field. Rabbits mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits.

Suppose that our rabbits never die and that the female
always produces one new pair (one male, one female)
every month from the second month on.

How many pairs will there be in one year?

#38

Rabbits .
48
2é !
aWa z
38 28 38 ,
™~
38 L858 88 Y8

From http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html #39

Fibonacci Numbers
GEB p. 136:

These numbers are best defined
recursively by the pair of formulas

FIBO (n) = FIBO (n - 1) + FIBO (n - 2)
forn > 2

FIBO (1) = FIBO (2) = 1
forn <=2

Can we turn this into a Python procedure?

#40

Defining FIBO

1. Be optimistic - assume

you can solve it, if you
could, how would you
solve a bigger
problem.

Think of the simplest
version of the
problem, something
you can already solve.

Combine them to solve
the problem.

These numbers are best
defined recursively by the
pair of formulas
FIBO (n) =

FIBO (n—1)

+ FIBO (n - 2)

forn>2

FIBO (1) =FIBO (2)=1

Defining fibo

fibo(n) evaluates to the n™ Fibonacci
number

def fibo(n): FIBO (1) = FIBO (2) = 1
ifn==1o0rn-==
return 1 # base case |FIBO (n)=
return fibo(n-1) +\ EII];D’I%C()H(; 1_)2)

forn>2

fibo(n-2)

#42

Concise fibo

fibo(n) evaluates to the n Fibonacci
number
def fibo(n):
return 1 if n <= 2 else fibo(n-1) + fibo(n-2)
FIBO (1) =FIBO (2) = 1

FIBO (n) =
FIBO (n—1)
+ FIBO (n - 2)
forn>2

Fibo Results

>>> fibo(2)

1 Why can’t our 4Mx
Z» fibo(3) Apollo Guidance
S>> fibo(4) Computer figure

3 out how many

>>> fibo(10) rabbits there will be
55 in 5 years?

>>> fibo(60)

Still working after 4 hours...

To be continued...

#44

Recursive Transition Networks

ORNATE NOUN

0N
LE }——{ ADJECTIVE|——| NOUN
~— =

Can we describe this using Backus Naur Form?

x|

| | Diont ask me again

QK I Yes | Ne | Cancel |_

#45

Recursive Transition Networks

ORNATE NOUN

]
ADJECTIVE)J—| NOUN
—

ORNATE NOUN ::= NOUN

#46

Recursive Transition Networks

ORNATE NOUN

l\
LE }——{AbJECTIVE}—{ NOUN
~ - —

ORNATE NOUN ::= NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

Recursive Transition Networks

ORNATE NOUN

}
ADJECTIVE || NOUN
_~

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN

#48

Recursive Transition Networks

ORNATE NOUN

v
ARTICLE | ADJECTIVE | ——| NOUN
~ =

ORNATE NOUN ::= ARTICLE ADJECTIVES NOUN
ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES =

Recursive Transition Networks

ORNATE NOUN

)
ADJECTIVE |——[NOUN
N_~

ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN

ADJECTIVES = ADJECTIVE ADJECTIVES
ADJECTIVES :=¢
OPTARTICLE = ARTICLE
OPTARTICLE :=¢

Which notation is better?

#50

Music Harmony

Kleines Harmonisches Labyrinth
(Little Harmonic Labyrinth)

#51

Hey Jude
John Lennon and Paul McCartney, 1968

Breakdown of Lyrics to "Hey Jude"

W NaNaNaNa

B Hey Jude

Other Words

Graphlam #52

hey Jude

take a sad song and make it better =
- you were made to go ot and get her —|
you have found her, now go and get her —|

let her Into your heart —

g remember to
.M{=} RS

let her under your skin —

GraphJam.com

#53

Hey Jude

V:C=3/2*F V:C=3/2*F

IV: Bb=4/3*F

Tonic: Hey Jude, don’t make it
V: bad. take a sad song and make it

Tonic: better Re-

IV: member to let her into your
Tonic: heart, then you can

V: start to make it bet-
Tonic: -ter.

#54

V:C=3/2*F

V:C=3/2*F

Verse :=
I Tonic: F I I Tonic: F I
| _Vv+v:iem=32232*F | -frain, don't’ carry the
v:c=32*F world up-on you shoul-
Bridge ::=
Pain, Hey Jude re- %

HeyJude ::= Verse VBBN VBBN Verse Verse Better Coda
VBBN ::= Verse Bridge Bridge Nanana (ends on C)
Coda ::=F Eb Bb F Coda

And Anytime you feel the ders.

#55

Music

e Almost All Music Is Like This

- Pushes and pops the listener’s stack, but
doesn’t go too far away from it

- Repeats similar patterns in structured way
- Keeps coming back to Tonic, and Ends on the
Tonic
« Any famous Beatles song that doesn’t end
on Tonic?

#56

Charge

e Challenge:
Try to find a
“pop” song with
a 3-level deep
harmonic stack

¢ PS3: due
soon!.

Be optimistic!

You know
everything you
need to finish it
now, and it is
longer than
PS2, so get
started now!

Beatles: “A Day in the Life” (starts on G, ends on E)

#57

Homework

e Start Problem Set 3 Now

- No, really.
- Due way too soon ...

« PS3 has associated Reading

#58

