List
Recursion:

Practice
&
Examples

Reading__guiz
| 3| |

P

One-Slide Summary

» Writing recursive functions that operate on
recursive data structures takes practice.
There are standard approaches to such
problems.

 length, member, sumlist, intsto, map and
filter are all important recursive functions
that operate on lists. You should know what
they do and how to write them.

» Python allows list comprehensions, in which
a new list is created from a filtered mapping
of an existing.

Teamwork!

o PS2 Partners Posted !
- Meet @ lab hours? ©
e PS1 Written Grades
Posted
- Holding Fee
- Pick them up

Do the readings!

Outline

» Review: Procedure Problem Solving
» Review: [a,b,c], [elt]+lst, lst[0], st[1:]
length
member
sumlist
intsto
map
filter
o List comprehensions

How To Write A Procedure

 Find out what it is supposed to do.
- What are the inputs? What types of values?
- What is the output? A number? Procedure? List?

» Think about some example inputs and outputs

» Define your procedure REMEMEER: WITH GRET

- More on this next slide — RESISTANCE .
» Test your procedure E\%
OHM NEVER FORGOT HIS

DYING UNCLE'S ADVICE.

Defining A Procedure
» Be optimistic!
» Base case: Think of the simplest input to the
problem that you know the answer to.
- For number inputs, this is often zero.
- For list inputs, this is often the empty list (null).
» Recursive step: Think of how you would solve
the problem in terms of a smaller input. Do
part of the work now, then make a recursive
call to handle the rest.
- For numbers, this usually involves subtracting 1.
- For lists, this usually involves cdr.

#7

Procedure Skeleton

» The vast majority of recursive functions look
like this:

def my_procedure(my_input):
if is-base-case?(my_input):
return handle-base-case (my_input)
return combine(first-part-of(my_input), \
my_procedure(rest-of(my_input)))

#8

Pairs and Lists
 [a,b] makes a pair of two things (“cons”)
- [1, 2] --> [1, 2]
- isinstance([1,2], list) --> True
» [0] and [1:] get the first and rest
- [1,2][0] -1
- [2] > [2]
A list is either [] (null) or a pair where the
rest is also a list

- [11+12] + [3] -> [1,2,3]

- [1)2’3] e [1’2)3]

- [1,2] ==1] --> False

- [1,2] + [3,4] -->[1,2,3,4] #

More Power Needed!

b’:nbfi

S -

length

» The length function takes a single list as an
argument and returns the number of elements
in that list.

- Recall: a list is either null or a pair where the
second element is a list

- length([]) -->0

- length([9,8]) --> 2

- length([1] + []) --> 1

- length([1,2,3][1:]) -->2

- length(5) --> error

« Write it now on paper. Base case? Recursion?

length Hint

e Here's a hint:

def length(lst):
if Ist == null:

#12

Definition of length

e Here it is:

def length(lst):
if Ist ==[]:
return O
else:
return 1 + length(Ist[1:])

Base
Case!

Inductive
Step!

#13

Liberal Arts Trivia: Economics

» This 1930 Tariff Act raised US tariffs on
imported goods to record levels. Over 1000 US
Economists signed a petition against it, and
after it passed many others contributed
increased their tariffs in retribution. US
exports and imports dropped by half and
many view this Act as a major catalyst for the
Great Depression.

#14

Liberal Arts Trivia: German Lit

 This tragic closet play is considered by many
to be one of the greatest works of German
literature. It centers on a man who makes a
pact with the Devil in exchange for knowledge
in his quest to discover the essence of life

member

» Write a function member that takes two
arguments: an element and a list. It returns
False if the list does not contain the element.
Otherwise it returns the sublist starting with
that element.

(“was die Welt im Innersten zusammenhalt”) - member(2, [1,2,3]) ->[2,3]
The man’s name officially means “Lucky” in - member(5, [1, 2, 3]) -> False
Latin, but now has negative connotations. - member(1, [1,2,3]) ->[1,2,3]
- member(3, [1, 2, 3]) ->[3]
- 3== -> False
Definition of member sumlist

def member(elt, Ist):
if st ==[]: # empty list contains nothing
return False
if Ist[0] == elt:
return Ist # we found it!
return member(elt, Ist[1:]) # keep looking

e Where is the base case? Where is the
inductive step?

#17

» Write a procedure sumlist that takes as input
a list of numbers. It returns the sum
(addition) of all of the elements of the list. It
returns O for the empty list.

- sumlist([1,2,3]) --> 6
- sumlist([]) -->0

#18

Definition of sumlist

e And here it is ...

def sumlist(lst):
if Ist ==[]: # base case
return 0
return [st[0] + \ # add current element
sumlist(Ist[1:]) # to rest of list

#19
* Mineswe... |ZHE®
me

intsto

« The function intsto takes a single non-
negative integer as an argument. It produces
a list of all of the integers between 1 and its

L

argument.

- intsto(3) -> [1,2,3]

- intsto(7) -> [1,2,3,4,5,6,7]
- intsto(0) -> [] ‘

Definition of intsto ?7|/ms = &N
, FEFFEFrrr
def intsto(x): m
if (x < 1):
return [] # base case

this number
recursive result

return [x] +\
intsto(x-1)

» What's wrong?

#21

Correct Definition of intsto
def intsto(x):
if (x < 1):
return [] # base case

return intsto(x - 1) + \ # recursive result
[x] # followed by x

e Huzzah!
e range(3) -> [0,1,2]
 range(7) -> [0,1,2,3,4,5,6]

#22

Higher-Order Functions: map

» The map function takes two arguments: a
work function and a list. It applies the work
function to every element of the list in order
and returns a list of the result.

- map(sqrt, [9,16,36]) -> [3,4,6]
- map(square, [1,2,3]) -> [1,4,9]
- map(abs, [2,-3,4]) -> [2,3,4]
- map(len, [“1”, “Claudius”]) ->[1,8]

- map(sqrt, []) ->]

#23

Mission Impossible: Write map

You can do it!
map(square,[1,2,3])
S (149)
map(abs,[2, -3, 4]) |3, ;
(23 4) D
map(sart, []) {3
- [l

(Yano0, WINDONS LIvE)

HROPOMDRFIIC
N

Definition of map

e Let's look in detail:
def map(workfun, Ist):
if Ist ==[]:
return [] # base case
return [workfun(lst[0])] + \ # make a list
map(workfun,lst[1:]) # recursive

#25

Alternate map

* map(abs, [1;'2)3]) -> [1)2;3]
e [abs(x) for xin [1,-2,3]] ->[1,2,3]

* map(sqrt, [1y4’9]) -> [1)273]
e [sqrt(i) foriin [1,4,9]] -> [1,2,3]

« map(len, []) -> []
e [len(elt) for eltin []] ->]

e Either way is full credit!

#26

Liberal Arts Trivia: Philosophy

« This branch of philosophy deals with the
theory, nature and scope of knowledge. Key

questions include “what is knowledge?”, “how

is knowledge acquired?”, “what do people
know?”, “how do we know what we know?”,
“what is the relationship between truth and
belief?”.

#27

Liberal Arts Trivia: Norse Myth

 In Norse Mythology, this god is associated with
light and beauty. His mother made every
object on earth vow never to harm him, but
she did not ask mistletoe. The other gods
made a new pastime of hurling objects at him
and watching them bounce off. The trickster
Loki heard of this, fashioned a spear from
mistletoe and had it thrown a him, with fatal
results.

#28

Liberal Arts Trivia: Music

« This musical instrument of the brass family
produces sound when the player's vibrating
lips cause the air column inside the
instrument to vibrate. It is usually

characterized by a telescopic slide with which

the player varies the length of the tube to

change the pitch. Glenn Miller, famous for his

“big band” and songs like In the Mood and
Chattanooga Choo Choo, played this
instrument.

#29

Map and iteration ...

« | want to print the squares of numbers 0 to 5.
for number in [0,1,2,3,4,5]:
display(number * nhumber)

for number in range(6):
display(number * number)

map(display, [x*x for x in range(6)])
 All three are equal! Expect last one on tests. .

filter

» The filter function takes two arguments: a
predicate and a list. A predicate is a function
that returns True or False. Filter returns the
sublist consisting of those elements that
satisfy the predicate.

- filter(is_odd, [1,2,3,4]) -> [1,3]

- filter(is_five, [1,5,5,”hi”]) -> [5,5]

- filter(lambda (x) : x < 5, [1,9,2,0]) -> [1,2,0]
- filter(is_five, [“susan”,”b”,”anthony”]) -> []
- filter(is_odd, []) ->]

#31

Definition of filter

def filter(pred, Ist):

if Ist ==[]:
return [] # base case
if pred(Ist[0]): # if it matches

return [Ist[0]] +\ # include it
filter(pred,Ist[1:])
else: # if it does not match
return filter(pred,Ist[1:]) # skip it

#32

Alternate filter

filter(is_odd, [1,2,3,4]) > [1,3]
[x for xin [1,2,3,4] if is_odd(x)] ->[1,3]
filter(is_five, [1,5,5,”hi"]) -> [5,5]
[x for x in [1,5,5,”hi”] if is_five(x)] -> [5,5]

filter(lambda (x) : x < 5, [1,9,2,0]) -> [1,2,0]
[x for xin [1,9,2,0] if x < 5] -> [1,2,0]
« Either way is full credit!

#33

[x*x for xin [1,2,3,4,5] if is_odd(x)]
m

#34

&

A Map and Filter Combined

[x*xforxin[1,2,3,4,5] if is_odd(x)]
[1,9,25]

[x/2 for xin [11,22,33,44] if is_odd(x+1)]
m

#35

[x*xfor xin[1,2,3,4,5] if is_odd(x)]
[1,9, 25]

[x/3 for xin [11,22,33,44] if is_odd(x+1)]
[7,14]

[transform for name in list if predicate]
[map for elt in list if filter]

#36

Homework

e Problem Set 2
» Problem Set 2 -- Reading

#37

