
#1

Programming With Data

#2

One-Slide Summary
• A list is a data structure, a way of storing and

organizing data.
• [a,b] creates a pair of two values.
• pair[0] extracts the first element of a pair.
• pair[1:] extracts the rest.
• A list is a recursive data structure. A list is

either empty (called []) or a pair where the
second element is a list.

• A recursive function has a simple base case
and a recursive case (where it calls itself).

#3

Outline

• Problem Set 1
– Babylonian Patents

• Data Structures
– Pairs
– +, [0], [1:]
– Triples

• Lists
• Procedures

#4

Problem Set 1

• Colors and photomosaics, oh my!
• Comments?

#5

The Patented RGB RMS Method
/* This is a variation of RGB RMS error. The final square-root has been eliminated to */
/* speed up the process. We can do this because we only care about relative error. */
/* HSV RMS error or other matching systems could be used here, as long as the goal of */
/* finding source images that are visually similar to the portion of the target image */
/* under consideration is met. */

for(i = 0; i > size; i++) {
rt = (int) ((unsigned char)rmas[i] - (unsigned
char)image->r[i]);
gt = (int) ((unsigned char)gmas[i] - (unsigned char)
image->g[i];
bt = (int) ((unsigned char)bmas[i] - (unsigned
char)image->b[i];
result += (rt*rt+gt*gt+bt*bt);
}

Your code should never look like this! Use new lines and
indenting to make it easy to understand the structure of
your code! (Note: unless you are writing a patent. Then the
goal is to make it as hard to understand as possible.)

#6

The Patented RGB RMS Method

• Patent Requirements
– New – must not be previously available

• Ancient Babylonians made mosaics

– Useful
– Non-obvious

• Many of you came up with this method!
• Some of you used abs instead, which works as well

 rt = rmas[i] - image->r[i];
 gt = gmas[i] - image->g[i];
 bt = bmas[i] - image->b[i];
 result += (rt*rt + gt*gt + bt*bt);

#7

Ways to Design Programs

• Think about what you want to do, and
turn that into code.

• Think about what you need to
represent, and design your code around
that.

Which is better?

#8

Data Structure
• A data structure is a way of storing and

organizing data so that it can be used
efficiently by a computer program.
– A well-designed data structure allows many

operations to be performed, using as few
resources (such as time and memory space) as
possible.

• When designing of many computer programs, the
choice of data structures is a primary consideration.
Experience in building large systems has shown that
the difficulty of implementation and the quality and
performance of the final result depend heavily on
choosing the best data structure.

#10

Data Structure Example: List
• List of classes, list of students, list of French

war heroes, list of countries in the UN, list of
X-men, list of groceries, ...

gnome_plan = [“collect underpants”, “?”,
“profit”]

#11

Liberal Arts Trivia: Philosophy

• In the Utopian Kallipolis, philosopher kings
ruled the ideal city state: "Philosophers
[must] become kings…or those now called
kings [must]…genuinely and adequately
philosophize." In the same book, the author
fashions the ship-of-state metaphor: "[A] true
pilot must of necessity pay attention to the
seasons, the heavens, the stars, the winds,
and everything proper to the craft if he is
really to rule a ship". Name the philosopher
and the book. #12

Liberal Arts Trivia: Neuroscience
• These parts of a neuron are cellular extensions

with many branches, and metaphorically this
overall shape and structure is referred to as a
tree. This is where the majority of input to the
neuron occurs. Information outflow (i.e. to other
neurons) can also occur, but not across chemical
synapses; there, the backflow of a nerve impulse
is inhibited by the fact that an axon does not
possess chemoreceptors and these parts cannot
secrete neurotransmitter chemicals. This
unidirectionality of a chemical synapse explains
why nerve impulses are conducted only in one
direction.

#13

Making Lists
• Lists are so important that we will now

discuss how to make them.
– villains_1984 = [...]

#14

Making a Pair

>>> [1, 2]
[1, 2]

[,] constructs a pair
(sometimes call “cons”)

1 2

#15

Splitting a Pair
>>> [1,2] [0]
1
>>> [1,2] [1:]
[2]

[0] extracts first part of a pair
[1:] extracts rest of a pair

1 2

car cdr

#16

Pairs are fine, but how do Pairs are fine, but how do
we make threesomes?we make threesomes?

#17

Triple

A triple is just a pair where one of
the parts is also a pair!

def triple(a,b,c): return [a, [b,c]]
def tri_first(a): return a[0]
def tri_second(a): return (a[1:])[0]
def tri_third(a): return (a[1:])[1]
...

#18

Lists

List ::= [1, 2, 3, ...]

A list is a pair where the second part is a list.

#19

Lists

List ::= [Expr] + List
List ::= []

A list is either:
 a pair where the second part is a list
or, empty

The function instance(x, list) returns
True for a list x and False for other values.

#20

List Examples
>>> []
[]
>>> [1] + []
[1]
>>> isinstance([], list)
True
>>> [1, 2]
[1, 2]
>>> [1] + ([2] + [])
[1, 2]

#21

More List Examples

>>> [5,6,7] [0]

>>> [5,6,7] [1:]

>>> ([5,6,7] [1:]) [0]

>>> [5,6,7][2]

>>> [] + [1] + [] Try these on paper!

#22

More List Examples

>>> [5,6,7] [0]
5
>>> [5,6,7] [1:]
[6, 7]
>>> ([5,6,7] [1:]) [0]
6
>>> [5,6,7][2]
7
>>> [] + [1] + []
[1]

#23

Recap

• A list is either:
 a pair where the second part is a list

 or [] (some books say: null or nil)
• Pair primitives:

[a, b] Construct a pair <a, b>
pair[0] First part of a pair or list
pair[1] Second part of a pair or list
list[1:] Rest of a list

#24

Card Tricks for Problem Set 2

#25

Problem Set 2:
Lists and Strings

• We can use [0] and [1:] on both lists and
strings!
>>> “hello”[0]

“h”

>>> “hello”[1:]

“ello”

>>> “he” + “llo”

“hello”

>>> [1,2] + [3,4,5]

[1,2,3,4,5]
#26

“A” Most Common List Bug

>>> 1 + [2,3,4]
???

#27

Liberal Arts Trivia: Nursing

• This “Lady with The Lamp” was a nurse,
writer and statistician. Her Diagram of the
Causes of Mortality in the Army in the East
was a pioneering use of statistical graphics,
including the pie chart and polar area
diagram (Crimean War, 1854).

#28

Liberal Arts Trivia: Geography

• Name the largest enclosed
body of water on Earth by
area, variously classed as the
world's largest lake or a full-
fledged sea. It has a surface
area of 371,000 square
kilometers and is bounded by
northern Iran, southern
Russia, western Kazakhstan
and Turkmenistan, and
eastern Azerbaijan.

#29

Liberal Arts Trivia: Jewish Studies
• This record of rabbinic

discussions pertaining to
Jewish law, ethics, customs
and history is a central text of
mainstream Judaism. It is
considered cryptic and hard to
understand, containing
obscure Greek and Persian
words. Scholars often produce
running commentaries that
explicate sections.

#30

How To Write A Procedure

• Find out what it is supposed to do.
– What are the inputs? What types of values?
– What is the output? A number? Procedure? List?

• Think about some example inputs and outputs
• Define your procedure

– More on this next slide

• Test your procedure

#31

Defining A Procedure
• Be optimistic!
• Base case: Think of the simplest input to the

problem that you know the answer to.
– For number inputs, this is often zero.
– For list inputs, this is often the empty list ([]).

• Recursive step: Think of how you would solve
the problem in terms of a smaller input. Do
part of the work now, then make a recursive
call to handle the rest.
– For numbers, this usually involves subtracting 1.
– For lists, this usually involves [1:].

#32

Procedure Skeleton

• The vast majority of recursive functions look
like this:

def my_procedure(my_input):
 if is-base-case?(my-input):
 return handle-base-case(my-input)
 else:
 return combine(first-part-of(my-input),
 my-procedure(rest-of(my-input)))

#33

Example: max_elt

• “Define a procedure max_elt to find the
maximum element in a list of positive
integers. If the list is empty, return 0.”
– What is the input?
– What is the output?
– Example input:

• [1, 2] -> 2
• [7, 5, 3] -> 7

#34

max_elt Skeleton

def my_procedure(my_input):

 if is-base-case?(my-input):

 return handle-base-case(my-input)

 else:

 return combine(first-part-of(my-input),

 my-procedure(rest-of(my-input)))

– is-base-case? = handle-base-case =

– combine = first-part-of = rest-of =

#35

max_elt Skeleton

def my_procedure(my_input):

 if is-base-case?(my-input):

 return handle-base-case(my-input)

 else:

 return combine(first-part-of(my-input),

 my-procedure(rest-of(my-input)))

– is-base-case? = not handle-base-case = 0

– combine = max() first-part-of = [0] rest-of = [1:]

#36

max_elt defined!

def my_procedure(my_input):

 if is-base-case?(my-input):

 return handle-base-case(my-input)

 else:

 return combine(first-part-of(my-input),

 my-procedure(rest-of(my-input)))

– is-base-case? = not handle-base-case = 0

– combine = max() first-part-of = [0] rest-of = [1:]

def max_elt(lst):

 if not lst: # or if lst == []:

 return 0

 return max(lst[0], max_elt(lst[1:]))

#37

List Length
• Define a procedure that takes as input a

list, and produces as output the length of
that list.

length([])  0
length([1, 2, 3])  3
length([1, [2,3,4]])  2

Do this now on paper. Yes, really. Hint0:
what is the definition of a list? Hint1: use
if and == [].

#38

List Length

• List is a recursive data structure, so length
must be a recursive function.

• By definition, a list is either empty or a pair
containing another list.
– The length of the empty list is 0.
– The length of a non-empty list is 1 + the length of

its tail.

def length(x):
 if x == []: return 0
 return 1 + length(x[1:])

#39

Practice

• Time permitting, let's do one together.
• Perhaps “square each element” or “reverse

this list”.

#40

Homework
• It's OK if you are confused now.
• Lots of opportunities to get unconfused:

– Problem Set 2 (and PS3 and PS4)
– Forum!
– Read the Course Book / Udacity
– Next Class – lots of examples programming

with recursive functions and definitions
– Office and Lab Hours!

