
References
Bodmer, F. [1944], with Hogben, L. (Ed.). The Loom of Language.

George Allen and Unwin, London, 7th impr., 1961.
Buxton, J.N. and Randell, B. [1969]. Software Engineering Tech-

niques. NATO Science Committee, Brussels, 1970.
Caracciolo di Forino, A. [1968]. String processing languages and

generalized Markov algorithms. In Symbol Manipulation
Languages and Techniques, D. G. Bobrow (Ed.), North
Holland Pub. Co., Amsterdam.

Courant, R. [1961]. In Applied mathematics: what is needed in
research and education--a symposium. SlAM Rev. 4, 4
(Oct. 1962), 297-320.

Dijkstra, E.W. [1972]. The humble programmer. Comm. ACM
15, 10 (Oct. 1972), 859-866.

Gold, M.M. [1969]. Time-sharing and batch processing: an
experimental comparison of their values in a problem-solving
situation. Comm. ACM 12, 5 (May 1969), 249-259.

Hardy, G.H. A Mathematician's Apology. Cambridge U. Press,
reprinted 1967. Partially reprinted in The World of Mathematics,
J.R. Newman (Ed.), Simon and Schuster, New York, 1956, pp.
2027-2038.

Higman, B. [1967]. ,4 Comparative Study of Programming Lan-
guages. American Elsevier, New York.

Jespersen, O. [1922]. Language, Its Nature, Development, and
Origin. George Alien and Unwin, London, 10th impr., 1954.

Jespersen, O. [1928]. An lnternationalLanguage. George Allen and
Unwin, London.

Jespersen, O. [1930]. Novial Lexike. George Allen and Unwin,
London.

Jespersen, O. [1938]. En Sprogmands Levned. Glyndendal,
Copenhagen.

Kernighan, B.W. and Plauger, P.J. [1974]. The Elements of
Programming Style. McGraw-Hill, New York.

Knuth, D.E. [1968-1973]. The Art of Computer Programming.
Addison-Wesley, Reading, Mass.

Naur, P. [1974a]. Concise Survey of Computer Methods. Student-
litteratur, Lund, Sweden, and Petrocelli Books, New York.

Naur, P. [1974b]. What happens during program development--
an experimental study. In Systemer&g 75, M. Lundberg and J.
Bubenko (Eds.), Studentlitteratur, Lund, Sweden, pp. 269-289.

Ralston, A. [1973]. The future of higher-level languages (in teach-
ing). In International Computer Symposium 1973, A. Gunther,
B. Levrat, and H. Lipps (Eds.), American Elsevier, New York,
1974, pp. 1-10.

Stone, M. [1961]. The revolution in mathematics. ,4mer. Math.
Monthly (Oct. 1961), 715-734.

Strunk, W. Jr., and White, E.B. [1959]. The Elements of Style.
Macmillan, New York.

Von Neumann, J. [1947]. The mathematician. In The Works of the
Mind, Heywood and Neff (Eds.), U. of Chicago Press. Also in
The Collected Works of John Von Neumann, Vol. 1, Princeton U.
Press, pp. 1-9; and in The World of Mathematics, J.R. Neumann,
(Ed.), Simon and Schuster, New York, 1956, pp. 2053-2063.

Weinberg, G.M. [1970]. PL/I Programming: A Manual of Style.
McGraw-Hill, New York.

P r o g r a m m i n g B. Wegbre i t
Languages Ed i to r

Exception Handling:
Issues and a
Proposed Notation
John B. Goodenough
SofTech, Inc.

This paper defines exception conditions, discusses
the requirements exception handling language features
must satisfy, and proposes some new language features
for dealing with exceptions in an orderly and reliable
way. The proposed language features serve to highlight
exception handling issues by showing how deficiencies
in current approaches can be remedied.

Key Words and Phrases: multilevel exit, goto
statement, error conditions, structured programming,
ON conditions, programming languages

CR Categories: 4.22

1. The Nature of Exception Conditions

Of the cond i t ions detected while a t t empt ing to per-
form some opera t ion , exception conditions are those
b rough t to the a t ten t ion o f the ope ra t ion ' s invoker .
The invoker is then permi t ted (or required) to r e spond
to the condi t ion . Bringing an except ion cond i t ion to

Copyright @ 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Second ACM
Symposium on Principles of Programming Languages, Palo Alto,
Calif., Jan. 20-22, 1975.

This work was supported in part by contract DAAA25-74-
C0469, Frankford Arsenal, Philadelphia, Pa.

Author's address: SofTech, Inc., 460 Totten Pond Road, Walt-
ham, MA 02154.

683 Communications December 1975
of Volume 18
the ACM Number 12

an invoker's attention is called raising an exception.
The invoker's response is called handling the exception.
Some properties of exception conditions relevant to
language features for raising and handling them are:

(a) an exception's full significance is known only
outside the detecting operation; the operation is not
permitted to determine unilaterally what is to be done
after an exception is raised;

(b) the invoker may be permitted to terminate the
operation at the point of the exception's detection; the
operation may specify that its termination is required;

(c) the invoker controls whether or not a default
response to the exception is to be activated; defaults
are defined within the operation raising the exception
and are executed unless the invoker prevents their
execution.

In essence, exceptions permit the user of an opera-
tion to extend an operation's domain (the set of inputs
for which effects are defined) or its range (the effects
obtained when certain inputs are processed). Exceptions
permit a user to tailor an operation's results or effects
to his particular purpose in using the operation. In
short, exceptions serve to generalize operations, making
them usable in a wider variety of contexts than would
otherwise be the case. Specifically, exceptions are used:

(a) to permit dealing with an operation's impending
or actual failure. Two types of failure are of interest:
range failure, and domain failure;

(b) to indicate the significance of a valid result or
the circumstances under which it was obtained.

(c) to permit an invoker to monitor an operation,
e.g. to measure computational progress or to provide
additional information and guidance should certain
conditions arise.

The value of making this classification of exception
uses is the insight it gives into the need for various excep-
tion-handling language capabilities. Although it may
sometimes be difficult to decide precisely how to classify
a given exception, this ambiguity is not crucial for the
purposes of this paper.

Range failure occurs when an operation either finds
it is unable to satisfy its output assertion (i.e. its cri-
terion for determining when it has produced a valid
result), or decides it may not ever be able to satisfy its
output assertion. For example, a read operation does
not satisfy its output assertion when it finds an end-of-
file mark instead of a record to be read; this is a range
failure of the first kind. The second type of failure is
exemplified by encountering a parity error when at-
tempting to read a record, since in this case, it is uncer-
tain whether repeated attempts to read will or will not
eventually be successful. For a numerical algorithm,
evidence of divergence is a range failure of the first
kind; failure to converge after a certain amount of
effort has been expended would be a failure of the
second kind.

In general, to deal with range failures, the following
capabilities are needed:

684

(a) The invoker needs the ability to abort the opera-
tion; the operation also needs the ability to say it cannot
do any more-- terminat ion is required. Sometimes as a
side-effect of terminating the operation, it is necessary
to undo all effects of attempting the operation.

(b) The ability to tell the operation to try again is
also required, since this may be a reasonable response
in some circumstances (e.g. in the case of reading the
bad tape record).

(c) The ability to terminate the operation, returning
partial results to the invoker, perhaps together with
additional information needed to make sense of the
results, is also required. For example, in the case of the
bad tape record, the invoker may be able to perform
some independent check of the record's validity or he
may be able to compensate for any errors found. In
short, he may want to modify partial results to make
them valid for his purposes. This capability is of obvious
utility in increasing the generality of an operation, since
the appropriate "fixup" actions (or even the possibility
of fixing up the partial results) will vary from one use of
the operation to the next.

In short, range failure requires the ability to termi-
nate an operation prematurely (with or without produc-
tion of partial results and with or without the "undoing"
of intermediate results). Range failure also requires the
ability to resume the operation when further attempts
at completion are deemed reasonable.

Domain failure is a somewhat different type of fail-
ure. It occurs when an operation's inputs fail to pass
certain tests of acceptability, e.g. the appearance of a
letter in a string of digits or the inability to find enough
space to satisfy a storage allocation requirement. Do-
main failure is distinguished from range failure in that
domain failure occurs when some input assertion is
tested and not satisfied, whereas range failure occurs
when an output assertion cannot be satisfied.

To deal with domain failures, an invoker must be
given enough information about the failure so he can
modify the input to satisfy the input criterion if he
wishes. If the invoker is unable to fix the problem, he
must be permitted to terminate the operation, with or
without the operation undoing any "setup" actions
taken before the domain failure was detected. The
capability an invoker may require to deal with this type
of failure is the ability to access the operands of the
operation as well as additional information provided
from within the operation. The invoker needs this in-
formation to help pinpoint in what way the operands
are in error.

Exceptions may also be raised to classify the result
of an operation. In this ease, the operation's result
satisfies its output assertion, but the invoker needs
additional information describing the result before he
can give it an appropriate interpretation. For example,
addition overflow on many computers produces a valid
result as long as the bits of the result are interpreted ap-
propriately. Or an operation processing a list of items

Communications December 1975
of Volume 18
the ACM Number 12

(or reading a file) may return the last item in the list
(or file) with an indication that it is the last item so the
invoker will not attempt to find more items. Note that
exceptions of this type are different from range failures
because the operation's output assertion is satisfied.
Since the output assertion may be satisfied in several
ways, however, the invoker needs to know which way it
was satisfied so he can use the result appropriately.

Result classification is a type of exception that leads
naturally to the use of status variables or return codes
(i.e. output parameters whose value designates the type
of result produced); there is no need to resume the oper-
ation because a valid result has been produced already.

Monitoring is the last class of exception conditions.
In this case, the invoker wants to be notified when some
condition occurs. This is not because the condition indi-
tion indicates a failure or the type of result being pro-
duced. Rather it is because he simply wants to keep track
of the computation's progress, or the operation may
need additional information at certain points and it is
too expensive to calculate this information every time
the operation is invoked, since the conditions under
which it is needed occur only rarely. When a monitoring
type of exception is raised, an invoker may wish to
terminate an operation; more frequently, the invoker
may be required to resume the operation because it is
not possible or economical to terminate the operation
cleanly at every monitoring point. One example of a
desirable use of monitoring is in conjunction with an
operation for searching through a data structure. Each
time an item is found, an exception is raised with an
argument identifying the item. The invoker can then
decide whether or not he wishes to get the next
item. If so, he resumes the operation. If not, he termi-
nates it. Resuming the operation is particularly eco-
nomical if the operation's state has been preserved by
the exception handling mechanism. Then, the search
algorithm, e.g. for searching a binary tree, can be writ-
ten recursively and intermediate results can be made
available without unwinding the recursion.

In short, exceptions and exception handling mecha-
nisms are not needed just to deal with errors. They are
needed, in general, as a means of conveniently inter-
leaving actions belonging to different levels of abstrac-
tion [2-7]. They are not necessarily rarely activated. For
example, in their use in dealing with result classification,
they might be activated on every invocation of an opera-
tion. In their use in monitoring operations and receiving
intermediate results, an exception might occur many
times for a single invocation of the operation. Exception
handling notations that imply a fixed implementation
technique are therefore not suited for dealing with the
complete range of exception requirements. In this
paper I propose a notation that is neutral with respect
to its implementation, so that exceptions raised by
different operations can potentially be implemented
differently, depending on their expected frequency and
type of use.

2. Previous Exception Handling Techniques

A variety of techniques have been used and sug-
gested for dealing with exception conditions. They all
have serious drawbacks of one kind or another, but to
place the paper in perspective, it is useful to review other
exception handling approaches briefly.

The most well-known and commonly used approach
is to supply subroutine calls with extra parameters for
dealing with exceptions. Three types of parameters are
commonly used.

(a) Subroutines. An exception handler is coded as a
subroutine and its name is passed as a parameter of a
call. This method has been advocated by Parnas [8, 9].

(b) Labels. In this case, the handler begins at the
statement whose label is passed as a parameter. Control
is transferred to the label parameter when an exception
is detected.

(c) Status variables. An integer valued parameter is
assigned a value before returning from a subroutine
call; the assigned value indicates whether an exception
has occurred, and if so, which one. As a variant of this
method, the subroutine may be coded as a function
whose returned value indicates whether and what excep-
tion has occurred.

Hill [10] has previously analyzed the relative virtues
of these methods.

Another set of techniques in effect associates implicit
subroutine, label, or status parameters with operations.
These techniques are:

(a) Object-oriented exception handlers. In this case,
a handler subroutine (or label) is associated with an
object, and subsequently, control is transferred to the
handler when the object is used with certain operations
and certain conditions arise. For example, the AED
Free Storage Package [11] permits a programmer to
establish different areas of storage, called zones. When a
zone is created, the programmer may specify a sub-
routine to be called if an allocation request for that zone
cannot subsequently be satisfied. Such a subroutine
serves as an implicit exception parameter of the storage
allocation operator.

(b) Handler setup calls. In this ease, there exists an
operation for associating a handler with an exception
that can be raised subsequently by some operation. For
example, in a package for formatting program output
[12], a subroutine NEW.END can be specified to be
called in place of a default subroutine when a line is too
long to be 'printed. The association between the line
overflow exception condition and NEW.END is estab-
lished by executing the call SETEND(NEW.END) .
NEW.END will now be called when a line overflow is
detected by a print operation.

(c) PL/I ON conditions. The properties of PL/I ON
conditions [13] are complex, but in essence they provide
a means of associating a programmer-defined sub-
routine with an exception condition.

A third set of techniques has been proposed pri-

685 Communications December 1975
of Volume 18
the ACM Number 12

marily for dealing with range failures. These techniques
are based on the idea that recovery from a range failure
is impossible; the only sensible action is to try some
alternative operation that may succeed in obtaining the
desired effect. This leads to a "checkpoint retry" ap-
proach in which, when failure is reported, an alternative
operation is performed. Specific techniques following
this approach are the "backtracking" technique [14] and
the recursive cache [15], a proposed hardware concept
for making more efficient the activity of restoring an
environment after failure has been reported. Hoare has
suggested a similar concept [16], written as:

Q1 otherwise Q2

meaning that if Q1 fails, then Q2 should be performed.
Hence, Q2 acts as an exception handler for the failure
of Q1. In Hoare's proposal, the failure of Q1 does not
imply the effects of QI are undone before Q2 is invoked.

We will not discuss any of these techniques further.
Keeping them in mind, however, may be useful in
understanding the wide range of circumstances under
which exception conditions are useful. Moreover, we
will argue later that any of these techniques could be
used in implementing our proposed exception handling
notation.

3. Exception Handling Requirements and Issues

The remainder of the paper discusses in detail a
proposed notation for dealing with exceptions. The
topics to be addressed fall into the following classes.

(a) Association of handlers with invocations of
operations. Since exceptions occur when attempting to
perform some operation, one basic issue is how to asso-
ciate the proper handler with the invocation of a given
operation.

(b) Control flow issues. These issues concern how
to ensure the user and the implementer of an operation
agree on whether termination or resumption of an
operation is permitted when a particular exception is
raised, and how a programmer expresses which of these
possibilities is being chosen.

(c) Default exception handling. It is useful to pro-
vide default handlers for exceptions raised by an opera-
tion but not handled by an invoker of the operation.
Default exception handling capabilities must be pro-
vided in a uniform manner for both language-defined
and programmer-defined exceptions.

(d) Hierarchies of operations and their exceptions.
Exception handling issues that arise from the interaction
between an exception raising operation and its imme-
diate invoker are somewhat different from those that
arise when an exception is disposed of by an indirect
invoker. These issues are sufficiently different to deserve
special attention.

One issue not discussed in this paper, but critically
important nonetheless, is methods for associating

parameters with exceptions. Analysis of this issue has
not been completed.

3.1 Associating Exception Handlers With Operations
In discussing the various methods for associating

handlers with exceptions raised by operations, the
differences between an operation, its invocation, and its
points of activation need to be kept in mind. An opera-
tion is either a subroutine or a language-defined operator
like addition. An invocation is an attempt to execute the
operation. An activation point is the place from which
an operation is invoked. For example, the loop

DO I = I TO N;
CALL F (I.I.I);
END;

specifies N invocations of the operation F and 2N invo-
cations of . . However, there is only one activation point
for F and there are two for , .

Handlers associated with exceptions are of two
kinds: default and invoker-defined. One distinction be-
tween these handler types is that invoker-defined
handlers can be different for different operation invoca-
tions, but default handlers are the same for every invo-
cation. Another distinction is that default handlers are
executed only if a programmer decides not to override
them. Examples of default handlers are those defined
for certain language-defined exceptions in PL/I, e.g.
OVERFLOW. When the OVERFLOW exception is
raised, there is a system-defined action that will be per-
formed by default unless some invoker-defined over-
riding action has been specified. We will discuss default
exception handling issues in a separate section. In this
section, we are primarily concerned with how invoker-
defined handlers are associated with exceptions.

In devising language features for exception handling,
a key consideration is that the notation help prevent
and detect programmer errors [23]. There are at least
three kinds of errors to be guarded against.

(I) Forgetting that an operation can raise a par-
ticular exception, and so not giving the exception due
consideration.

(2) Associating a handler with the wrong activation
point.

(3) Associating a handler with the wrong exception
(this is possible only when an operation can raise more
than one exception).

The proper way to deal with these error possibilities
is to devise a notation that makes compile time detection
of errors possible. Therefore, it is reasonable to require:

(a) explicit declaration of what exceptions an opera-
tion can raise. For example, if F and G are subroutines
able to raise exception X, they should be declared as
follows:

DCL F ENTRY (FIXED) RETURNS (FIXED)IX:...];
DCL G ENTRY (FIXED)IX:. :.];

(b) static association of exception handlers with

686 Communications December 1975
of Volume 18
the ACM Number 12

activation Points (i.e. associations defined at compile
time rather than at run time).

To satisfy the requirement for static association,
handlers are attached to syntactic units containing
activation points (see Figure 1). In particular, handlers
can be attached to procedure calls:

CALL G (A); [X: handler .action]

or to expressions containing operators, e.g.

(A q- B) [OVERFLOW:...]

More than one handler can be attached to a syntactic
unit, e.g.

(A/F(B)) [OVERFLOW:...
ZERODIVIDE:...
X : . . .]

Handlers may be associated with statements, e.g.

H = A q- B; [SIZE:...]

where SIZE is the exception raised when the value of
A q- B is too large to be represented exactly as the
value of H. SIZE is an exception raised by the assign-
ment operator? Handlers may also be attached to
groups of statements, e.g. loops:

DO WHILE (. . .) ;
• . . / * l o o p body contains READ operations*/
END; [ENDFILE:...]

The notation for associating handlers with loops and
subroutine calls is similar to that proposed by Boch-
mann [20] and Zahn [26].

Handlers may also be attached to procedure defini-
tions, in which case it is useful to define the scope of the
procedure to include any handlers attached to it.

A handler is invoked if the exception for which it is
defined is raised by an activation point within the
handler 's reach. The reach of a handler is the syntactic
unit to which it is attached (see Figure 1), excluding any
contained syntactic units having a handler definition
for the same exception. This is similar to the usual
block structure name scope rule, except that here the
"blocks" are parenthesized expressions, simple state-
ments, statement groups, loops, and subroutine bodies•
Note that the statements comprising a handler definition
are not themselves within the reach of the handler;
they are within the reach of handlers attached to some
containing syntactic unit. For example, in

(A • (B --t- C) [OVERFLOW:••.]) [OVERFLOW:•.•]

the reach of the first O V E R F L O W handler is the ex-
pression (B -F C), whereas the reach of the second
handler is the total expression, excluding the syntactic
units for which an O V E R F L O W handler is already

1 In PL/I, the SIZE exception is not checked for unless the pro-
grammer enables it. In my notation, providing an override handler
for an exception is equivalent to enabling it. If the default handler
for SIZE ignores the exception, then invoking the default handier
(see Section 3.3) could be interpreted as disabling the exception.

Fig. 1. Syntax describing how exception handlers are associated
with syntactic units. Syntactic forms enclosed in large square
brackets are optional; a tilde signifies one or more repetitions of the
preceding syntactic form; braces enclose alternatives (listed
vertically), of which one must be chosen•

<assigr.naent> ::- <variable> = <expresalon> ; [[<handler group>]~

<quantity> 11: <variable>
~unction call

. i J ~ : ~ rn:~:i>o n >? {::U:rn:~Yi>on>] t

<subroutine definition> ::: <label> : PROCEDURE ~<parameter name list>~
?> <

defined (i.e. (B + C) and any such units contained
within the first O V E R F L O W handler's definition)•

The definition of a handler 's reach makes it possible
to associate a handler with more than one activation
point. This makes programs more readable than if a
handler could be associated with only one activation
point• For example, writing

(A • (B + C)) [OVERFLOW:..•]

is the appropriate way to say that overflow is to be
handled the same way whether raised by the add or
multiply operator• When several activation points are
to have the same handler, it is useful to be able to sub-
stitute a single handler definition for repeated identical
definitions. The proposed notation permits this con-
solidation of unchanging information.

The ability to associate a handler with several acti-
vation points is useful, but it does make it possible to
inadvertently associate the wrong handler with an
activation point. For example, consider the following
statements:

H = F(A) -I- F(B) IX:. . .];
I = (F(C) + F(B)) I X : . . .];

In the statement assigning to H, no handler is given for
exception X raised by F(A). Even if the statement
assigning to H is nested in a context that provides a
handler for X, e.g.

DO;
H = F(A) d- F(B) IX:. . .];
I = (F(C) -I- F(B)) IX:. . .];

END;IX: . . .]

there is no way to check the real intent of the pro-
grammer ! Did he really mean to write the first statement,

687 Communications December 1975
of Volume 18
the ACM Number 12

or did he mean to write

H = (F(A) -t- F(B)) [X:.. . l;

The advantage of being able to associate a single
handler with several activation points probably more
than offsets the possibility of making this sort of error.

Exceptions raised by a subroutine call or language-
defined operator are called implicitly raised exceptions.
I f an activation point for an implicitly raised exception
does not lie within the reach of a handler for that excep-
tion, the program is in error unless the exception is a
default exception (see Section 3.3), in which case the
exception's default handler is automatically invoked.
Note that in contrast to PL/I, exceptions raised implic-
itly within a subroutine are not automatically passed
to the subroutine's invoker; if they are to be passed one
level higher, then they must be raised explicitly, using
one of the commands given in the next section.

Static associational methods, together with declara-
tions of what exceptions programmer-defined opera-
tions can raise, make it possible for a compiler to detect
failure to deal with every exception an operation can
raise. Such compile-time checks for errors are not, in
general, possible with run-time associational methods
like PL/I ON conditions. Of course, run-time methods
permit different handlers to be associated with the same
activation point, but this increased power is not particu-
larly useful (an example is given in [I]); whatever effects
can be achieved with run-time association can be
achieved by the proposed static method with equal con-
venience and with increased reliability.

It is important that methods for associating handlers
with exceptions should help prevent and detect errors.
It is also important to deal uniformly with exceptions
raised by language-defined operations (e.g. addition)
and programmer-defined operations (i.e. subroutines).
The proposed method obviously is uniform in this re-
spect, unlike the use of subroutines, labels, or status
variables passed as parameters.

Another important requirement is the efficiency
with which exceptions can be handled. It has been
argued [17, 18] that the cost of setting up an exception
handler association should be low relative to the cost of
activating the handler, since exceptions occur only
rarely. This argument equates exceptions with operation
failures, and I have explicitly taken a broader view.
Sometimes it is reasonable to raise an exception every
time an operation is invoked, and perhaps, several times
per invocation. None of the existing exception handling
methods mentioned earlier is optimally efficient for
dealing with every type of exception condition. Al-
though arguments can be made about the relative effi-
ciency of the various techniques for setting up and
handling an exception (see [1]), the key advantage of
the method proposed in this paper is that any of the
various implementation techniques can be used, and in a
properly supported system, a programmer will be able
to specify with a compiler directive what method of im-

plementation will be used for particular exceptions. In
this way, a programmer can control implementation
efficiency without having to rewrite his program. The
implementation neutrality 2 of the proposed notation is
one of its most attractive properties, although admit-
tedly, there are few or no systems in existence that
would permit this property to be exploited. Nonetheless,
the notation presents an opportunity that is foreclosed
by the other methods.

3.2 Control Flow Issues
There are basically two types of control flow issues:
(a) issues relevant to raising an exception and

activating a handler for it;
(b) issues relevant to leaving an exception handler,

so the "normal" flow of control can be continued.

ESCAPE, SIGNAL, and NOTIFY. The various
situations in which exceptions are useful present differ-
ent possibilities for resuming or terminating an opera-
tion. To guard against error, each exception should
have its resumption or termination constraints specified
explicitly and in a way that permits violations of these
constraints to be detected at compile time. For this
reason we divide exceptions into three types:

(a) ESCAPE exceptions, which require termination
of the operation raising the exception;

(b) NOTIFY exceptions, which forbid termination
of the operation raising the exception and require its
resumption after the handler has completed its actions;
and

(c) SIGNAL exceptions, which permit the opera-
tion raising the exception to be either terminated or re-
sumed at the handler's discretion.

Every exception must be declared to be one of these
types, and it is an error if a declared exception is not
treated in accordance with its type declaration. The re-
sult of distinguishing these control flow possibilities in
the actual text of a program is greater clarity in dealing
with exceptions and in understanding programs.

All existing exception handling techniques are defi-
cient either in not making control flow constraints suffi-
ciently explicit or in not being able to handle the entire
spectrum of control flow possibilities inherent in the
different reasons for raising an exception. For example,
t'L/I permits an invoker to resume or terminate any
operation raising an exception, but it does not permit
expressing constraints about whether termination or
resumption is permitted or required. Other standard
methods are explicit about their control flow options,
but they are not flexible enough to handle all the possi-
bilities. For example, status variables are appropriate
for dealing with result classification exceptions, but
since the status value methods require terminating an
operation before the status value can be processed, this
technique is not suitable for notifying or signaling.

2 The concept of an implementation-neutral notation is the
essence of what has been called elsewhere [24, 25] the uniform re-
ferent concept.

688 Communications December 1975
of Volume 18
the ACM Number 12

Passing exception handling subroutines as parameters
is really suitable only for the N O T I F Y control flow
discipline. (Note that the value of distinguishing
N O T I F Y exceptions is that if an operation is guaranteed
to be resumed after an exception is handled, the imple-
mentor of the operation need not spend any effort or
space to take care of the possibility of being terminated.)

The exception handling method being proposed in
this paper permits an invoker to terminate or resume
operations and it makes control flow constraints explicit.
For example, with the proposed method, a subroutine
F taking a single argument and raising exceptions X and
Y must be declared as follows if X is an ESCAPE excep-
tion (i.e. if the operation of F cannot be continued after
X is raised) and if Y is a S IGNAL exception (i.e. if F 's
operation can be terminated or resumed by the handler
for Y) :

DCL F ENTRY(FIXED) [X: ESCAPE, Y: SIGNAL];

The definition of F is similarly required to specify what
exceptions can be raised and their type:

F: PROCEDURE(AA) [X: ESCAPE, Y: SIGNAL];
DCL AA FIXED;

To raise the exceptions X or Y from within F, a pro-
grammer must write either ESCAPE X or S IGNAL Y,
e.g.

DO WHILE "exception Y should be raised";
SIGNAL Y;
END;

IF "exception X should be raised";
THEN ESCAPE X;

Writing ESCAPE Y or S IGNAL X is an error. A com-
piler can verify that the handler for X does not attempt to
resume F, and that the implementer of F does not make
incorrect assumptions about whether F can or cannot be
resumed after raising exceptions X or Y. N O T I F Y excep-
tions are defined and raised similarly, and the N O T I F Y
control flow constraints can similarly be enforced by a
compiler.

Exceptions raised by an ESCAPE, SIGNAL, or
N O T I F Y command are called explicitly raised exceptions.
I f an exception raised by an ESCAPE, SIGNAL, or
N O T I F Y command lies within the reach of a handler
for that exception, then that handler is executed. I f these
commands do not lie within the reach of such a handler
and if the subroutine containing the commands is per-
mitted to raise this exception, the exception is raised
within the subroutine's invoker• It is an error to ex-
plicitly raise an exception that either does not lie within
the reach of a handler for it or cannot be passed to a
subroutine's invoker.

Exceptions can be raised by operations executed
within handlers, since otherwise the actions permitted
within handlers would be too restricted. For example,
it is convenient to be able to write:

CALL F; [X: CALL G; [Y:.. . ESCAPE Z;] . . .]

meaning that if X is raised, G will be called, and if G
fails by raising Y, then the handler for X (and Y) will be
exited by raising the exception Z. Note that since the
reach of a handler does not include the statements com-
prising the handler, it is possible to substitute ESCAPE
X for ESCAPE Z without recursively invoking the
handler for X. Similarly, if Z were a handler associated
with the invocation of F, e.g.

CALL F; [X: CALL G; [Y:.. . ESCAPE Z;] . . .
Z : . . . I

the handler for Z is not invoked by the ESCAPE Z
statement, since the reach of Z's handler does not include
the handler for X or Y. Hence ESCAPE Z must invoke
some other handler for Z.

The ability to pass exceptions up to an enclosing con-
text is convenient because it is quite natural to deal with
an exception first locally and then more globally [19]. For
example, it is often convenient to write something like
this:

H: PROCEDURE [X: ESCAPE];

B = F(A); IX:. . . ESCAPEX;]
, . •

END; D(:. . . ESCAPE X;]

meaning that the exception X is first dealt with locally,
and when either no fixup is deemed possible or no further
action using local context is useful, the exception is
passed on up to the next handler, in this case one at-
tached to the procedure body. When this more global
action is completed, the exception is passed up to the
procedure's invoker. This is often quite natural and is
more convenient than having to invent different excep-
tion names just to prevent naming conflicts.

The ESCAPE statement serves naturally as a multi-
level loop exiting method, e.g.

DO WHILE (. . .) ;
DO WHILE (. . .) ;

I F . . .
THEN ESCAPE X;
ELSE...

END;
E N D ; I X : . . .]

When X is raised, both the inner and outer loops will be
terminated. Similarly, exceptions raised by operation
invocations within a loop (instead of with an ESCAPE
statement) can cause exiting from the loop, e.g. if F is
able to raise the ESCAPE exception X, then we could
write:

DO WHILE (. . .) ;

B = F(A); [X: ESCAPE X;]
• • ,

C = F(A); [X: ESCAPE X;]
• , .

END; IX:. . .]

The ESCAPE X statement written with each invocation

689 Communications December 1975
of Volume 18
the ACM Number 12

of F shows explicitly that X is not handled within the
loop, but instead is passed to a containing context. It
would certainly be possible to permit F to be invoked
without explicitly attaching a handler to F(A), but for
clarity, it seems more reasonable to explicitly declare
disinterest in dealing with X locally. This should make
the program more understandable to readers, who will
be reminded thereby that the exception X is raised by F
and not by other operations invoked in the loop.

The EXIT Command. In the exception handling ap-
proach being proposed in this paper, the last executed
statement in a handler must explicitly state whether the
operation raising the exception is to be terminated or
resumed. Termination of an operation raising an ex-
ception is expressed by having the flow of control per-
manently leave a handler, either by raising an ESCAPE
type exception, by executing an EXIT statement, or by
executing a R E T U R N statement (which causes not only
the handler to be exited, but returns control from the
subroutine containing the handler).

The EXIT statement has a valued and nonvalued
form. The valued form, EXIT (value), is used to specify
a value for an expression, function call, or function sub-.
routine to which the handler being EXITed is attached
For example, suppose a programmer desires to check
whether the sum of A and B exceeds C; note that if A
and B are known to be nonnegative in value and if their
sum overflows, the sum does exceed C. Using the pro-
posed notation, the programmer could write:

IF (A q- B > C) [OVERFLOW: EXIT(TRUE);]
THEN. . .

Similarly, --1 will be assigned to D if the multipli-
cation or the addition overflows in the following
expression:

D = (A • (B + C)) [OVERFLOW: EXIT (-1);];

This example shows that EXIT terminates the whole syn-
tactic unit to which the handler is attached as well as the
operation raising the exception.

When a valued EXIT statement terminates a handler
attached to a function body, the effect is the same as a
normal return, e.g.

F: PROCEDURE(...) RETURNS(FIXED);

END F; [OVERFLOW: EXIT (-1);]

F returns the value -- 1 if this OVERFLOW handler is
executed. It would be equally valid to write R E T U R N -
(- 1) in place of EXIT(- - 1).

The nonvalued form of EXIT statement terminates
execution of the s ta tement containing the exception-
raising operation. For example, in the statement assign-
ing to D, above, if EXIT(- -1) were replaced by EXIT,
no assignment to D would be performed if OVERFLOW
is raised; the next statement executed would be the one
following the example statement. Similarly, in the follow-
ing program fragment, if exception A is raised, the next

statement executed will be the one following the entire
conditional statement:

IF Q[A: EXIT;]
THEN. . .
ELSE...

An EXIT from a handler attached to a procedure body
is equivalent to a normal return from the procedure.

In my original paper [I], I defined a third variant of
the EXIT statement in which a programmer could specify
the name of the operation being terminated when a
handler is exited. But this additional EXIT command
complexity provides no new expressive power, and only
makes the EXIT statement more complex to implement
and understand. The valued and nonvalued EXIT state-
ment forms are sufficient.

The RESUME Command. The R E S U M E command
(also proposed in [18]) is used to return control to a sub-
routine or language-defined operation raising an excep-
tion. RESUME returns control to the statement following
the S I G N A L or N O T I F Y command raising the excep-
tion. R E S U M E must be used to leave a handler for a
N O T I F Y type of exception, and may be used to leave a
handler for a S I G N A L E D exception. 8

To illustrate the use of RESUME, consider a sub-
routine SCAN(P, V) that takes a pointer P to a data
structure, SIGNALing the exception VALUE once for
each item in the data structure. The value of the item is
stored in V when VALUE is raised? To find the sum of all
elements in the structure, one could write:

SUM = 0;
CALL SCAN(P, V); [VALUE: SUM = SUM d- V;

RESUME;]

SCAN returns when all values have been found. I f P is
assumed to point to an array of positive values, with a
negative value indicating the last value, SCAN might be
implemented as follows:

SCAN: PROCEDURE(P, V) [VALUE: SIGNAL];
DCL A (100) BASED (P) FIXED;
DCL V FIXED;
DCL I FIXED;

DO I = 1 TO 100 WHILE (A(1) > 0);
V = A(I);
SIGNAL VALUE;
EN D;

END SCAN;

Note that control will return to the statement following
S I G N A L VALUE when the invoker of SCAN executes
RESUME.

The ENDED Exception. I f SCAN is used to search
for a value, X, where X is to be inserted into the scanned
structure if it is not already present, the following state-

a A.I. Wasserman [private communication] has suggested that
a handler sometimes should re-initiate the exception-raising opera-
tion rather than RESUME it. The ability to retry an operation is
not conveniently supported by my proposed notation.

4 The manner in which VALUE is supplied with a parameter is
not satisfactory in several ways, but it suffices for the purposes of
this section and the next.

690 Communications December 1975
of Volume 18
the ACM Number 12

ments could be written:

DO;
CALL SCAN(P, V);
CALL INSERT(P, X); /*X not found*/

END; [VALUE: IF V = X
THEN EXIT; /*X found*/
ELSE RESUME;] /*keep looking*/

A rather elaborate control structure is needed just to in-
sure INSERT(P, X) is invoked only under the appropri-
ate circumstances. To avoid such circumlocutions, it is
useful to assume that an exception called E N D E D is
raised whenever an operation terminates normally [20]
(see Figure 2). By taking advantage of this exception, we
can write in place of the previous program:

CALL SCAN(P, V); [VALUE: IF V = X
THEN EXIT;
ELSE RESUME;

ENDED: CALL INSERT(P, X);
EXIT;[

E N D E D is an ESCAPE exception, i.e. it is an error
to attempt to RESUME the operation raising ENDED.
The E N D E D exception is raised when execution of a
syntactic unit having an E N D E D handler is completed
normally. E N D E D cannot be raised explicitly with the
ESCAPE statement and is not raised if evaluation of a
syntactic unit is terminated because some other excep-
tion has been raised.

E N D E D can usefully be attached to loops as well as
to subroutine calls. For example, consider a program
that searches an array, A, containing M distinct values
in order to find where a given value X occurs; i f X is not
present in A, it is to be inserted. In addition, there is
another array B, where B(I) is to equal the number of
times the value A(1) has been searched for. This program
can be written as follows (cf. [21, pp. 266, 267, 277 and
26, p. 283]):

DO I = 1 TO M;
IF A(1) = X

THEN ESCAPE FOUND;
END; [FOUND: B(I) = B(1) -1- 1;

EXIT;
ENDED: M = M q- 1;

A(M) = X;
B(M) = 1;
EXIT;]

The exception E N D E D is, in this case, raised if and only
if F O U N D is not raised.

The CLEANUP Exception• When an operation is not
RESUMEd from a SIGNALed exception handler, it
may be necessary first to release certain areas of storage,
close files, restore data structures to a consistent state,
etc. [17]. Since such "cleanup" actions are only required
for SIGNALed exceptions, it is natural to treat CLEAN-
UP as an exception associated with the S IGNA L opera-
tion, viz.:

SIGNAL Y; [CLEANUP:...]

For reasons to be explained later, C L E A N U P cannot be

Fig. 2. The need for ENDED• Before processing can resume
independently of whether F raised any exceptions or terminated
normally, it may be necessary to perform some actions necessary
only when the operation terminates normally.

ESCAPEX / ~ CALL F~

x] I~o~,-,o= ~I [Normall I-{andler '°rlReturn~

-f

attached to any syntactic unit other than a S IG N A L
statement• Moreover, a C L E A N U P exception can only
be raised implicitly; it is an error to write ESCAPE
CLEANUP, S I G N A L CLEANUP, or N O T I F Y
CLEANUP.

C L E A N U P handlers are executed beginning with the
handler (if any) attached to the least recently executed
S IGNAL statement in a chain of S IGNAL statements.
Note that the most recently executed S I G N A L state-
ment in this chain is the one whose handler is causing
operations to be terminated. To see the sequence of
C L E A N U P handler executions, consider the following
program:

G: PROCEDURE]LAST: SIGNAL, Z: ESCAPE];
DCL H ENTRY [FIRST: SIGNAL];

CALL H; [FIRST: SIGNAL SEC; [CLEANUP:...]
RESUME;]

END G; [SEC: SIGNAL LAST; [CLEANUP:...]
RESUME;]

Note that if H raises the exception FIRST, SEC will be
raised within G, and then LAST will be SIGNALed to
G 's invoker. I f G 's invoker decides to terminate G, the
C L E A N U P handlers attached to S IGNAL FIRST (in
H), S IGNAL SEC, and S IGNAL LAST will be executed
in the order FIRST, SEC, LAST. This sequence of
C L E A N U P executions would be the same, of course,
even if exceptions FIRST, SEC, and LAST all had the
same name.

Note that if the statement ESCAPE Z were executed
within G, no cleanup handlers would be invoked because
cleanup handlers are only associated with S I G N A L
statements. Note also that if EXIT is written in place of
the RESUME following S IGNAL LAST, then if G's
caller RESUMEs G when LAST is raised, the handler
for SEC will be exited. This implies termination of the
S IGNAL SEC statement and termination of H. Once H is
terminated, the S IGNAL SEC cleanup handler will be
executed, but the cleanup handler for S I G N A L LAST
will not be invoked, since the handler for LAST (in G 's
invoker) resumed execution of G.

691 Communications December 1975
of Volume 18
the ACM Number 12

The specified process of working from the lowest level
(innermost) CLEANUP handler to the highest (outer-
most) is the most natural way of cleaning up a prema-
turely terminated operation. A CLEANUP handler must
be attached only to SIGNAL statements because the se-
quence of CLEANUP invocations is so closely tied to
the sequence of SIGNAL statement executions.

To keep control flow simple, a CLEANUP handler
must not raise any exceptions passed outside the handler.
(For example, consider the potential complexity if
SIGNAL SEC's CLEANUP handler were permitted to
raise G's exception Z.) Note that a compiler can deter-
mine whether or not any exceptions raised within a
CLEANUP handler will be fully processed within the
handler, and this constraint is not difficult to enforce.

Statements within a CLEANUP handler are executed
in the normal sequence. When there are no more state-
ments to execute, control passes to the next CLEANUP
handler to be executed. Note: the EXIT statement is not
used to leave a CLEANUP handler, since leaving a
CLEANUP handler means execute the next CLEANUP
handler and/or terminate an operation, whereas EXITing
a normal handler means execute the next statement in
the normal control flow.

A shorthand notation involving CLEANUP handlers
will be introduced in Section 3.4.

Summary of Control Flow Issues. The issues discussed
in this section may be summarized as follows:

(I) Prevention~detection of programming errors. The
need to classify exceptions according to their control
flow constraints (ESCAPE, NOTIFY, SIGNAL);

(2) Readability~simplicity~uniformity. The use of ES-
CAPE-type exceptions to support multilevel loop exits in
GOTO-free programming (ESCAPE to handlers associ-
ated with loops or statement groups);

(3) Exception handling requirements.
(a) The ability to avoid explicit GOTOs to terminate

an operation raising an exception: the need to express
that a handler is being exited (the nonvalued EXIT state-
ment), and the need to provide a value for a function or
expression when exiting a handler (the valued EXIT state-
ment, e.g. EXIT (6));

(b) the need to deal with an exception first locally
and then more globally (e.g. ESCAPE X from within a
handler for X);

(c) the need to clean up before terminating an opera-
tion (the CLEANUP optional exception associated with
SIGNAL) ;

(d) the ability to define an exception handler for
normal termination of an operation (ENDED).

3.3 Default Exception Handling

Up to now, our discussion has concentrated on in-
voker-defined exception handlers. It is very convenient,
however, to define default handlers for some exceptions.
These handlers are executed unless specifically over-
ridden.

Exceptions having default handlers will be called de-
fault exceptions. Failure to provide a handler for a de-
fault exception is not an error; to the contrary, it is a way
of specifying that the default handler is to be executed.

Most exception handling methods do not satisfy re-
quirements for default exceptions very well. These re-
quirements are:

(1) Declaration of default exceptions. To help prevent
and detect mistakes in using exceptions, exceptions
having default handlers should be declared to have them.
Only if the existence of a default handler is made known
to a compiler can exception handling errors be detected.
For example, failure to provide an invoker-defined
handler is an error only for nondefault exceptions.

(2) Programmer-defined deJault handlers. It should
be possible to establish default exceptions and handlers
for programmer-defined subroutine packages; the con-
cept of a default exception should not be limited to sys-
tem-defined operations (addition, I/O, etc.)

(3) Uniformity. The methods for overriding or in-
voking default exception handlers should be the same for
both system-defined and programmer-defined default
exceptions.

(4) Explicit invocation of default handlers. A pro-
grammer must be able to specify explicitly as well as im-
plicitly whether a default handler is to be invoked or
overridden, or whether the decision is to be made by a
higher level handler.

Default exceptions are notationally essential. They
make operation invocations more concise and readable,
and make programming more convenient.

Methods for invoking default handlers are provided
in standard PL/I only for language-defined exceptions
like OVERFLOW. For such exceptions, a programmer
can insure that a default handler will be invoked at cer-
tain activation points by writing

ON condition-name SYSTEM;

A corresponding mechanism is not provided for pro-
grammer-defined exceptions. MULTICS supports a more
elaborate set of facilities for defining and invoking default
handlers (see [1] for a brief discussion). But neither
standard PL/I nor MULTICS PL/I provide completely suit-
able default exception facilities.

In extending the proposed exception handling nota-
tion to deal with defaults, the first issue is to distinguish
those exceptions for which default handlers exist [re-
quirement (1) above]. Then a compiler can enforce the
rule that absence of a handler is an error unless the ex-
ception has a default handler. I propose that default ex-
ceptions be distinguished by declaring them to have the
attribute "OPTIONAL", since it is optional for the pro-
grammer to provide a handler for these exceptions. For
example,

DCL FIX: ESCAPE, Z: SIGNAL OPTIONAL];

means a handler is required for X but not for Z. Note that
ESCAPE exceptions cannot, by their very nature, have
default handlers.

692 Communications December 1975
of Volume 18
the ACM Number 12

Fig. 3. Program showing how programmer-defined and language-defined default exceptions are treated uniformly.

G: P R O C E D U R E (. . .) [X: OVERFLOW: O P T I O N A L SIGNAL];
DCL F ENTRY [X: O P T I O N A L SIGNAL];

C A L L F; [X: ...

EXIT ;]
CALL F;
CALL F; [X: RESUME(DEFAULT);]

A = B + C; [OVERFLOW: ...

EXIT;]
A = B + C;
A = B + C; [OVERFLOW: R E S U M E (D E F A U L T) ;]

END G;

/* defaul t h an d l e r o v e r r i d d e n; F is t e r m i n a t e d */
/~ defaul t hand ie r invoked i m p l i c i t l y */
/* defaul t h an d l e r invoked exp l i c i t ly */

/':' de fau l t h an d l e r o v e r r i d d e n ; a s s i g n m e n t not p e r f o r m e d */
/* o v e r f l o w defau l t h an d l e r invoked i m p l i c i t l y */

/,~ o v e r f l o w defau l t h a n d l e r invoked exp l i c i t l y */

In calling F, the default handler for Z will be invoked
if the call does not lie in the reach of any handler for Z.
For example,

CALLF;[X: . . .]

will cause the default handler for Z to be invoked if there
is no handler for Z attached to a syntactic unit contain-
ing this call statement. Note that in contrast to PL/I, the
search for a default handler does not automatically ex-
tend beyond the subroutine in which the exception is
raised implicitly. This is consistent with the principle of
being explicit about important connections between
modules. Something as important as an exception con-
dition should not be passed across subroutine boundaries
except by explicit command.

An invoker should be permitted to invoke a default
handler explicitly as well as implicitly. (It is always dan-
gerous to provide only implicit ways of invoking some
capability.) To permit this, we add an option to the
RESUME statement. By writing RESUME(DEFAULT)
instead of RESUME, a programmer specifies that the
default handler for an exception is to be invoked. For
example, the call to F could be written:

CALL F; [X:...
Z: RESUME(DEFAULT) ;]

to show explicitly that Z's default handler is to be in-
voked. RESUME(DEFAULT) is analogous to ESCAPE
except that it directs control flow downward to a default
handler instead of upward to an invoker-defined handler.
RESUME(DEFAULT) may be written only within a
handler for a default exception.

Fig. 4. An example of multiple default handlers.

ENDPAGE ENDPAGE

693

The proposed notation for giving an exception a
default handler is illustrated below. This is what the
implementer of subroutine F would write to define the
default handler for Z:

SIGNAL Z; [DEFAULT:.../*the default handler */
CLEANUP:...
ENDED:...] /*invoked if default is overridden */

In short, DEFAULT is an exception condition associated
with the SIGNAL command. This exception is raised if
no overriding handler exists for Z or if a handier for Z
executes the statement RESUME(DEFAULT) . The
CLEANUP actions will, of course, be executed only if a
handler for Z is exited. The actions associated with
E N D E D will be executed just in case the default handler
for Z is not executed and F is RESUMEd. Note that
this is the normal definition of E N D E D as applied to the
SIGNAL operation. D EF A U LT exception handlers can
be associated with NOTIFY as well as the SIGNAL
operations.

A D E F A U L T handler must be associated with every
SIGNAL or NOTIFY command used to raise a default
exception, e.g. within subroutine F above, it would he an
error to write SIGNAL Z without associating a DE-
F A U LT handler with the SIGNAL Z command. DE-
FAULT, like ENDED, is also an exception that can only
be raised implicitly. It is an error to write ESCAPE
DEFAULT.

The default exception handling capability described
here is not necessarily difficult to implement. In essence
RESUME(DEFAULT) is just a GOTO statement refer-
encing a label implicitly associated with a SIGNAL
statement.

The proposed default exception handling notation
permits programmer-defined and system-defined excep-
tions to be dealt with uniformly. For example, consider
the subroutine in Figure 3. Note that even though G is
able to raise exception X and the OVERFLOW excep-
tion, these exceptions are not raised explicitly within G.
Therefore, they must be disposed of entirely within G;
they cannot be passed implicitly to G's invoker.

The RESUME(DEFAULT) command gives higher
level programs the ability to substitute default handlers
for lower level default handlers. This can be quite useful
as is illustrated in Figure 4. The figure shows an applica-
tion program, P R O G R A M D, that makes use of two
program packages, A and B, each of which prints m a -

Communications December 1975
of Volume 18
the ACM Number 12

Fig. 5. Substituting a default handler.

C A L L P R I N T ; [E N D P A G E : S I G N A L E N D P A G E ;
[D E F A U L T : • • . ; / * o v e r r i d e s P R I N T d e f a u l t ; s e r v e s a s */

EXIT; /* default for Package A or B */

ENDED: . . . ; /~ executed if PROGRAM D provided an */

EXIT;]/* overriding handler */

RESUME;] /~:, control returns to PRINT * /

terial using a PRINT utility subroutine. The PRINT
utility is assumed to raise the exception ENDPAGE at
appropriate points. Instead of having Package A and
Package B override the PRINT default handler, they
need to signal D to see if D wants to deal with the END-
PAGE exception. If not, A and B will deal with the excep-
tion in an appropriate way. As far as D is concerned, the
default response for ENDPAGE when using Package A
can be different from the default response for Package B.
In effect, Package A and B provide their own default re-
sponse for the E N D P A G E exception if their calls to
PRINT are written as shown in Figure 5. Note that the
EXIT from the DEFAULT handler in Figure 5 terminates
the SIGNAL ENDPAGE operation; it does not termi-
nate the PRINT operation.

The default handler provided by A or B will be exe-
cuted only if P ROGRAM D does not override it. Pre-
sumably, the A and B default handlers are different from
the PRINT default handler.

It is useful and natural to permit Package A (for ex-
ample) to resume the PRINT program by invoking
PRINT's default handler for ENDPAGE if Program D
has invoked A's ENDPAGE default handler. The natural
way to express this effect is to write:

CALL PRINT;
[ENDPAGE: SIGNAL ENDPAGE;

[DEFAULT:. . . RESUME(DEFAULT);
ENDED: . . . EXIT;]

RESUME;]

The problem is that RESUME and RESUME(DE-
FAULT) are commands for resuming the operation
with which a handler is associated, and in this case, the
D E F A U L T handler is associated with the SIGNAL
E N D P A G E statement. Resuming the SIGNAL opera-
tion does not make sense. The desired effect can be
achieved, but hardly in a stylish manner:

CALL PRINT;
[ENDPAGE: DO;

SIGNAL ENDPAGE;
[DEFAULT:. . . EXIT;
ENDED: . . . ESCAPE DONE;]

RESUME(DEFAULT);
/*invoke PRINT's default handler for
ENDPAGE */

END; [DONE: EXIT;]
RESUME;]/*resume PRINT operation */

Instead of forcing programmers to write the above
sort of program, it is more reasonable to provide an
interpretation for RESUME and RESUME(DE-
FAULT) when they appear in the body of a D E F A U L T
handler. Specifically, when RESUME and RESUME-

694

(DEFAULT) are used as a means of leaving a DE-
F A U LT handler, such statements will be interpreted as
though an EXIT statement were executed and then the
next statement executed were the RES U ME or RE-
SUME(DEFAULT) statements, i.e. the RESUME or
R E S U M E (D E F A U L T) commands are interpreted
with respect to the context containing the D E F A U L T
handler, not with respect to the D E F A U L T handler
itself.

The system of programs in Figure 4 shows an im-
portant distinction between default and nondefault
handlers, namely, whether lower- or higher-level pro-
grams have the power to pre-empt the handlers at a
given level. If a higher-level handler can prevent execu-
tion of a lower-level handler, then the lower-level
handler is a default handler. If a lower-level handler can
prevent execution of a higher-level handler, then the
lower-level handler is not a default handler; it is an
override handler. The proposed exception handling
method gives programmers the ability to permit either
a lower- or higher-level program to have the final say
in how an exception should be disposed of. Moreover,
exception handling actions can percolate up from an
operation raising an exception until some invoker is
found who is able to deal with the exception, or once
the exception has reached the highest level, default
handlers can be invoked successively from higher to
lower levels until a default handier has successfully
dealt with the exception (cf. [22, pp. 189-198]).

The proposed method of dealing with defaults satis-
fies all default exception handling requirements by
extending the previously developed exception handling
notation in a uniform way. I assume that language-
defined exceptions like OVERFLOW will be defined as
default exceptions so a programmer does not have to
provide an explicit handler for every operation able to
raise such exceptions.

3.4 Exception Handling Hierarchies
Until now, discussion has concentrated mostly on

exception handling requirements arising from the rela-
tion between an operation raising an exception and its
immediate invoker. In this section, some system-wide
consequences of the exception handling approach
advocated in this paper will be briefly examined.

One set of issues arises from the fact that a sub-
routine often only mediates between an operation rais-
ing an exception and the operation disposing of the
exception. For example, suppose operation B is called
by operation A. A expects B to raise exceptions X, Y,
and Z under certain conditions, but these conditions

Communications December 1975
of Volume 18
the ACM Number 12

Fig. 6. Explanation of the PASS shorthand notation• PASS
written without a CLEANUP handler is equivalent to PASS with
an empty CLEANUP handler, i.e. [X: PASS;] is equivalent to
IX: PASS; [CLEANUP:;]]

T y p e of e x c e p t i o n X T r a n s l a t i o n of X: PASS;
[CLEANUP:];

ESCAPE X: ESCAPE X ;

SIGNAL X: . . . SIGNAL X; [CLEANUP:]
I~ESUME ;

OPTIONAL SIGNAL X: . .. SIGNAL X: [CLEANUP:
DEFAULT:

RESUME(DEFAULT);]
RESUME;

NOTIFY X: ... NOTIFY X;
RESUME;

OPTIONAL NOTIFY X: NOTIFY X;
[DEFAULT: RESUME(DEFAULT);

RESUME;

occur only when B invokes operation C, so C is the
routine that actually has responsibility for detecting the
exception. B acts merely as a conduit, transmitting
exceptions detected by C to A. B could be implemented
as follows:

B: PROCEDURE [X: SIGNAL,
Y: OPTIONAL SIGNAL,
Z: ESCAPE];

DCL C ENTRY IX: SIGNAL
Y: OPTIONAL SIGNAL,
Z: ESCAPE];

DO WHILE (. . .) ;
CALL C;

END;
. . ,

END B; [X: SIGNAL X;
RESUME;

Y: SIGNAL Y;
[DEFAULT: RESUME(DEFAULT) ;]

RESUME;
Z: ESCAPE Z;]

Note that the handlers for X, Y, and Z do nothing
except pass these exceptions to B's invoker; there are
not even any C L E A N U P actions to be performed when
B is terminated. Although the basic notation is adequate
to express what is to happen, the notation is rather
cumbersome, especially if there are many exceptions
being passed through to an invoker. It is even more
cumbersome if the same cleanup actions are to be per-
formed when C raises any of its exceptions, and B's
operation is terminated• For example, we would then
have to write:

END B; [X: SIGNAL X; [CLEANUP:...]
RESUME;

Y: SIGNAL Y; [CLEANUP: . . .
DEFAULT:RESUME(DEFAULT) ;]

RESUME;
Z : . . . ESCAPE Z;]

The three dots in all cases represent the same set of
cleanup actions• Obviously there is a need for a short-
hand notation to cover this situation, which is not at all
uncommon• Before suggesting a shorthand notation,
however, note that actions common to several excep-
tions are not limited to cleanup actions; if X, Y, and Z
are all related, a common (possibly null) action in
response to them might be required within B, but only
B's invoker cares about the finer distinctions implied by
X, Y, and Z. Therefore, to deal with actions common to
several exceptions, we propose the following notation:

END B; [X:Y:Z: . .. PASS; [CLEANUP: . . .]]

where the three dots preceding PASS represent actions
to be performed when C raises X, Y, or Z, and the three
dots after C L E A N U P represent actions to be performed
before the operation of B is terminated as a result of
passing an exception to B's invoker• The semantics of
PASS are specified as follows: for each exception in-
voking the handler containing PASS (i.e. for excep-
tions X, Y, and Z in the above case), the handler body
is replicated and associated with only one exception; for
example, [X :Y: Z : . . . P A S S ; [C L E A N U P : • • .]] is
replaced by:

[X: . . . PASS; [CLEANUP: . . .]
Y: . . . PASS; [CLEANUP: . . .]
Z: . . . PASS; [CLEANUP: . ..]]

Each instance of PASS is then replaced with an appro-
priate set of commands for passing the exception up to
the next handler, according to the type of exception
PASS is used with (see Figure 6).

Although the motivation for PASS was the need to
pass exceptions to invokers of subroutines, the defini-
tion permits use of PASS within a subroutine as well,
e.g.

B: PROCEDURE..•

CALL C; [Z: . . . PASS;]

END B; IX: Y: Z: . . . PASS;]

This code implies that when C raises Z, some action will
be performed in the context of the call to C. Then action
common to X, Y, and Z will be performed before the
exception C raised is passed to B's invoker•

In short, the ability to treat groups of exceptions
identically before passing the exceptions to other
handlers is important for notational conciseness, and
the need to do so arises naturally when higher level
programs need a more detailed breakdown of exceptions
than intervening programs•

The insistence that no exceptions be propagated
automatically to invokers may seem too burdensome to
some, because the automatic propagat ion of exceptions
upwards has at least two apparent advantages:

(a) It makes it easier to add an exception to a sys-
tem of programs•

(b) Exceptions automatically passed upward are

695 Communications December 1975
of Volume 18
the ACM Number 12

ultimately passed to the main p rogram ' s environment ,
which may be a debugging system or the system's user
at an interactive terminal. Considerable flexibility in
dealing with exceptions can thereby be provided.

These seeming advantages are more apparent than
real. I f a p rog rammer adds an exception to a subrou-
tine, and the exception is only disposed of by a sub-
rout ine several levels higher in the calling hierarchy,
the proposed nota t ion does require that all intervening
programs be modified to explicitly pass the new excep-
t ion through. Al though this certainly increases the work
of p rog ram modification, it is not entirely wasted effort.
There are definite advantages in having to examine all
intervening p rograms to see how they are affected by
the new exception, and the proposed nota t ion forces
such an examinat ion to be carried out.

As for the second requirement, the ability to pass an
exception to a main p rogram ' s environment , it is per-
fectly reasonable to provide a c o m m a n d for raising an
exception in the main p rog ram ' s envi ronment without
first passing it up to the main program. No t providing
such a c o m m a n d is too restrictive, since p rog ramming
by stepwise refinement or levels o f abstract ion implies
tha t top level p rograms will be unaware o f many excep-
tions raised at lower levels. I f a lower level is unable to
dispose of some exception and is also unable to pass this
exception meaningfully to a higher level, then raising
the exception directly in the main p rogram ' s environ-
ment should be possible. Doing so is useful and will
drastically reduce the number of exceptions that would
otherwise have to be passed up to the main program.

4. Conclusions

In this paper I have discussed the issues posed by
exception conditions. I have proposed a new exception
handl ing nota t ion that solves exception handling prob-
lems in a more uni form and reliable way than any
existing method. The proposed nota t ion succeeds in
abolishing nonlocal goto statements to deal with excep-
t ions and subsumes the by-now-famil iar device of
" b r e a k " or " leave" statements for multilevel loop
exiting. The proposed nota t ion is not complete, since
it does not satisfy the need for parameters associated
with exceptions. Nonetheless, the analysis shows that
the wide variety of exception handl ing approaches that
exist today can be replaced with a single uni form ap-
p roach that satisfies the needs of failure, result classifi-
cation, and moni tor ing exceptions equally well with
reasonable efficiency.

A c k n o w l e d g m e n t s . I am grateful to M. D. Mcl l roy
for guiding my revision of the original paper [1] by
providing m a n y useful suggestions and comments .
His observat ion that my original proposals amounted
to at taching handlers to syntactic units was especially

helpful. I have also benefitted f rom comments o f the
referees.

References
1. Goodenough, J.B. Structured exception handling. Conf. Rec.,
Second ACM Symp. on Principles of Programming Languages,
Palo, Alto, Calif., Jan. 1975, pp. 204-224.
2. Dahl, O-J., Dijkstra, E.W., and Hoare, C.A.R. Structured
Programming. Academic Press, New York, N.Y., 1972.
3. Woodger, M. On semantic levels in programming. Proc. IFIP
Congress 71, North-Holland Pub. Co., Amsterdam, 1972, pp.
402--407.
4. Liskov, B.H. A design methodology for reliable software
systems. AFIPS Conf. Proc., Vol. 41, Part 1, 1972 Fall Joint
Computer Conference, AFIPS Press, Montvale, N. J., pp. 191-199.
5. Liskov, B.H. The design of the VENUS operating system.
Comm. A C M 15, 3 (Mar. 1972), 144-149.
6. Dijkstra, E.W. The structure of the 'THE'-multiprogramming
system. Comm. A C M 11, 5 (May 1968), 341-346.
7. Liskov, B. and Zilles, S. Programming with abstract data
types. SIGPLAN Notices (ACM Newsletter) 9, 4 (Apr. 1974),
50-59.
8. Parnas, D.L. A technique for software module specification
with examples. Comm. A C M 15, 5 (May 1972), 330-336.
9. Parnas, D.L. Response to detected errors in well-structured
programs. Dep. of Computer Sci., Carnegie-Mellon University,
Pittsburgh, Pa., July 1972.
10. Hill, I.D. Faults in functions, in ALGOL and FORTRAN.
Computer J. 14, 3 (March 1972), pp. 315-316.
11. Ross, D.T. The AED free storage package. Comm. A C M 10,
8 (August 1967), 481-492.
12. AED Programmer's Guide. SofTech, Inc., Waltham, Mass.
1972.
13. Noble, J.M. The control of exceptional conditions in PL/I
object programs. Proc. 1FIP Congress 68, North-Holland Pub.
Co., Amsterdam, 1969. pp. C78-C83.
14. Golomb, S.W. and Baumert, L.D. Backtrack programming.
J. A C M 12, 4 (Oct. 1965), 516-524.
15. Homing, J.J., Lauer, H.C., Melliar-Smith, P.M. and Randell,
B. A program structure for error detection and recovery. In
Operating Systems, E. Gelenbe and C. Kaiser (Eds.), Springer-
Verlag, New York, 1974, pp. 171-187.
16. Hoare, C.A.R. Parallel programming: an axiomatic approach.
STAN-CS-73-394, AD769674, Dep. of Computer Sci., Stanford
U. Oct. 1973.
17. Organick, E.L The MULTICS System: An Examination of
Its Structure. MIT Press, Cambridge, Mass., 1972, 187-216.
18. Lampson, B.W., Mitchell, J.G., and Satterthwaite, E.H. On
the transfer of control between contexts. In Programming Sym-
posium, Lecture Notes in Computer Science, Vol. 19, B. Robinet
(Ed.), Springer-Verlag, New York, 1974, pp. 181-203.
19. Brown, W.S. An operating environment for dynamic-recursive
computer programming systems. Comm. A C M 8, 6 (June 1965),
371-377.
20. Bochmann, G.V. Multiple exits from a loop without the
GOTO. Comm. A C M 16, 7 (July 1973), 443-444.
21. Knuth, D.E. Structured programming with goto statements.
Comp. Surv. 6, 4 (Dec. 1974), 261-301.
22. Elson, M. Concepts of Programming Languages. Science
Research Associates, Chicago, II1., 1973.
23. Gannon, J.D. and Horning, J.J. The impact of language
design on the production of reliable software. International Con-
ference on Reliable Software, IEEE Cat. No. 75CH0940-7CSR,
April 1975, pp. 10-22; also IEEE Trans. on Software Eng. SE-1, 2
(June 1975), to appear.
24. Ross, D.T. Uniform referents: an essential property for a
software engineering language. In Software Engineering, J. T. Tou,
(Ed.), Vol. 1, Academic Press, New York, 1970, pp. 91-101.
25. Ross, D.T., Goodenough, J.B., and Irvine, C.A. Software
engineering: process, principles, and goals. Computer 8, 5 (May
1975), 17-27.
26. Zahn, C.T. Jr. A control statement for natural top-down
structured programming. In Programming Symposium, Lecture
Notes in Computer Science, Vol. 19, B. Robinet (Ed.),
Springer-Verlag, New York, 1974, pp. 170-180.

696 Communications December 1975
of Volume 18
the ACM Number 12

