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Abstract

This paper describes a new algorithm for ow and context
insensitive pointer analysis of C programs. Our studies show
that the most common use of pointers in C programs is in
passing the addresses of composite objects or updateable
values as arguments to procedures. Therefore, we have de-
signed a low-cost algorithm that handles this common case
accurately. In terms of both precision and running time, this
algorithm lies between Steensgaard's algorithm, which treats
assignments bi-directionally using uni�cation, and Ander-
sen's algorithm, which treats assignments directionally us-
ing subtyping. Our \one level ow" algorithm uses a re-
stricted form of subtyping to avoid uni�cation of symbols
at the top levels of pointer chains in the points-to graph,
while using uni�cation elsewhere in the graph. The method
scales easily to large programs. For instance, we are able
to analyze a 1.4 MLOC (million lines of code) program in
two minutes, using less than 200MB of memory. At the
same time, the precision of our algorithm is very close to
that of Andersen's algorithm. On all of the integer bench-
mark programs from SPEC95, the one level ow algorithm
and Andersen's algorithm produce either identical or essen-
tially identical points-to information. Therefore, we claim
that our algorithm provides a method for obtaining precise
ow-insensitive points-to information for large C programs.

1 Introduction

Programs written in C typically make widespread use of
pointer variables. In order to analyze a program that uses
pointers, it is necessary to perform a pointer analysis that
computes, at every dereference point in a program, a su-
perset of the set of symbols or memory locations that may
be accessed via the given dereference. The precision of a
pointer analysis is determined by the sizes of these \points-
to" sets. Points-to information is useful for any subsequent
program analysis, whether this client analysis is an optimiza-
tion algorithm, a code browsing tool, or a program trans-
formation. Experiments have shown that the precision of
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points-to information can greatly impact the performance
and usefulness of subsequent analyses [SH97a].

The focus of this paper is ow and context insensitive
pointer analysis. Within this domain, there are algorithms
such as Steensgaard's uni�cation-based approach [Ste96b]
(almost linear running-time), which scale well to large pro-
grams but produce relatively imprecise results. On the
other hand, algorithms such as Andersen's subtyping-based
approach [And94] (worst-case cubic running-time) produce
much more precise results, but do not scale well to large pro-
grams. The challenge has been to design an analysis that has
the scaling properties of Steensgaard's analysis and the pre-
cision of Andersen's analysis. While some algorithms have
been proposed in the literature, it is unclear whether any of
them provides the right solution (see Section 5).

Our manual studies of C programs indicate that by far
the greatest use of pointers in C programs is in passing the
addresses of composite objects or updateable values as argu-
ments to procedures. In such cases, a method that produces
accurate information for \top level" pointers (i.e., point-
ers that are not themselves pointed to by other pointers)
can yield the same precision as a method that is accurate
for all pointers. Therefore, we have designed a new low-
cost algorithm for pointer analysis that handles this com-
mon case accurately. Our one level ow algorithm improves
upon Steensgaard's uni�cation-based algorithm by avoiding
uni�cation of symbols at the top levels of pointer chains in
the points-to graph. The method can also be interpreted as
a restriction of Andersen's subtyping rules at assignments
to one level in the type structure.

In this paper, we describe our algorithm. We make the
following contributions:

� We present the one level ow algorithm, a new pointer
analysis algorithm that lies between the algorithms of
Steensgaard and Andersen, in terms of both running-
time and precision. Its asymptotic complexity is
quadratic in the size of the program.

� Our algorithm is a simple extension of Steensgaard's
algorithm, and is easy to implement quickly and cor-
rectly. In can be added to any uni�cation-based pointer
analysis algorithm.

� We demonstrate that in practice, the algorithm has the
scaling properties of Steensgaard's algorithm, and the
precision of Andersen's algorithm.

{ On all of our test programs, including the integer
programs from SPEC95 and a 1.4 MLOC pro-
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foo(&s1); p = &s1;
foo(&s2); p = &s2;
bar(&s3); q = &s3;

q = p;
foo(struct s *p) f *p.a = 3; bar(p); g *p.a = 3;
bar(struct s *q) f *q.b = 4; g *q.b = 4;
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Figure 1: Two programs that illustrate the di�erence between the algorithms of Steensgaard and Andersen. The program in
(a) above represents the common case in C programs, while the program in (b) above is a variant of the program without
procedure calls. Figures (c), (d) and (e) above show the points-to graphs computed by Steensgaard's algorithm, Andersen's
algorithm, and our one level ow algorithm, respectively, for the program in (b) above. The edge labeled with * is a ow
edge.

gram (Microsoft Word 97), the one level ow al-
gorithm scales linearly in both time and space
requirements. It uses twice as much time and
memory as Steensgaard's algorithm.

{ On all of our test programs except Word 97, to
which Andersen's algorithm does not scale, the
one level ow algorithm and Andersen's algorithm
provide either identical or very similar precision.

� We compare our algorithm with Andersen's algorithm
on real, large programs, up to 140,000 LOC (gcc). Be-
yond comparing precision in terms of the average sizes
of points-to sets at static dereference points, we show
that for each benchmark, the entire distributions of
points-to set sizes using the two algorithms are very
similar.

The rest of the paper is organized as follows: In Section
2, we present a motivating example, and we use this example
to explain the main idea of our algorithm. In Section 3, we
describe our one level ow algorithm in detail. In Section
4, we describe our experimental framework, and present our
empirical results. We discuss related work in Section 5, and
make concluding remarks in Section 6.

2 Example

Example 1 A fragment of a C program is shown in Figure
1 (a). This program represents the most common case of
pointer usage across our test programs. A variant of this
program without procedure calls is shown in Figure 1 (b). A
ow and context insensitive pointer analysis would produce
the same points-to sets for both variants of the program.

Figure 1 (c) shows the points-to information computed
by Steensgaard's algorithm for the program in Figure 1
(b). The points-to graph shown contains nodes represent-
ing equivalence classes of symbols and edges representing
pointer relationships. Every node contains a single pointer
edge. Steensgaard's algorithm processes assignments bi-
directionally: The left hand side and right hand side mem-
ory locations in an assignment are constrained to hold the
same contents1. For the example program, the e�ect of the
assignment from p to q is to force both p and q to point to
the equivalence class containing s1, s2, and s3, even though
p cannot point to s3 in any execution of the program.

Figure 1 (d) shows the points-to information computed
by Andersen's algorithm. In this case, every node is asso-
ciated with a single symbol and contains a set of pointer
values. Assignments are processed directionally: The con-
tents of the right hand side location are copied to the left
hand side. This method produces more accurate points-to
sets as a result. In the example program, p is not required
to point to s3.

Figure 1 (e) shows the points-to information computed
by our one level ow algorithm. Our points-to graph is sim-
ilar to that of Steensgaard, but includes special \ow" edges
between nodes. Flow edges are introduced at assignments,
one level below (in the points-to graph) the symbols involved
in the assignment. In the example program, the assignment
from p to q introduces a ow edge from the pointer tar-
get node of p to the pointer target node of q. A ow edge
from one node to another indicates that all of the symbols
associated with the �rst node must be associated with the
second. Thus, the pointer target node of p contains s1 and
s2, whereas the pointer target node of q contains both of

1A limited form of subtyping allows an exception to this rule, in
cases where the right hand side does not hold any pointer value.
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those symbols, as well as s3. All of the nodes related by
ow edges are constrained to have equal contents; that is,
they are required to hold pointers to the same node. If any
of s1, s2 or s3 point to a given symbol, our algorithm will re-
quire that all of s1, s2 and s3 point to that symbol, thereby
losing precision compared to Andersen's algorithm.

Andersen's algorithm achieves directionality in assign-
ments by using subtyping rules. In order to accommodate
directionality, it is necessary to allow unlimited fanout, or
outdegree, in the points-to graph. This leads to trees with
fanout at all levels. The algorithm is expensive because of
the work required to track the subtyping relations induced
at all levels of the points-to graph. Steensgaard's algorithm
uses type equality rules to merge (unify) equivalence classes
of symbols at assignments, leading to nodes with single out-
degree in the points-to graph. The use of type equality rules
makes Steensgaard's analysis inexpensive, but approximate.

The di�erence between the two algorithms can be viewed
in terms of the �nal points-to graph, or in terms of the analy-
sis itself. Shapiro and Horwitz viewed the di�erence in terms
of the �nal points-to graph. Therefore, they designed an al-
gorithm that allows k-limited outdegree at all levels of the
points-to graph [SH97b]. We believe the interesting di�er-
ence is really in the analysis itself. Therefore, our algorithm
allows some amount of directionality (using subtyping) at
assignments. In terms of the �nal points-to graph, our al-
gorithm can be viewed as allowing unlimited outdegree in a
few critical areas of the graph, while restricting outdegree
to single edges everywhere else.

3 One level ow algorithm

In this section, we present our one level ow algorithm. We
�rst describe the algorithm informally as an extension of
Steensgaard's uni�cation-based approach, and then present
the algorithm formally as a set of non-standard type infer-
ence rules over a pointer language. We show how our algo-
rithm can be viewed as a restriction of Andersen's algorithm.
Finally, we discuss correctness and asymptotic complexity.

3.1 Algorithm description

A pointer analysis can be thought of as an abstract compu-
tation that models memory locations. Every location � is
associated with a label or set of symbols ' and holds some
contents � (an abstract pointer value) (Figure 2). A location
\points-to" another if the contents of the former is a pointer
to the latter. Information about locations can be encoded
as a points-to graph, in which nodes represent memory lo-
cations and edges represent points-to relationships.

In Steensgaard's algorithm, the e�ect of an assignment
from y to x is to equate the contents of the locations as-
sociated with y and x. This is achieved by unifying (i.e.,
equating their labels and contents) the locations pointed-to
by y and x into one representative location (Figure 2). This
uni�cation may further require the pointed-to locations of
the pointed-to locations to be merged, and so on, resulting
in chains in the points-to representation. The uni�cation
is represented declaratively through the type rule in Figure
2 (d). The rule says that the program is correctly typed
(that is, symbols are associated with correct points-to sets)
if and only if the pointed-to locations of y and x are identi-
cal. Steensgaard's algorithm is extremely eÆcient, because

pointed-to locations can be found and uni�ed in close to con-
stant time (amortized). It has a linear space requirement,
and almost linear running-time (in the size of the program).

Our one level ow algorithm extends Steensgaard's al-
gorithm by pushing the e�ect of assignment processing one
level down the chains in the points-to graph (Figure 3). The
e�ect of an assignment from y to x is to introduce a special
\ow" edge from the pointed-to location of y to the pointed-
to location of x, and to equate only the contents of the two
pointed-to locations (Figure 3 (b)). The ow edge relates the
labels of the pointed-to locations: For every ow edge, all of
the symbols in the label of the source of the edge must be
included in the label of the target of the edge. Assignment
processing is represented declaratively through the type rule
in 3 (d). This rule says that the program is correctly typed
if and only if the pointed-to locations of y and x have the
same contents, and if the label of the pointed-to location
of y is a subset of the label of the pointed-to location of x.
The rule allows a degree of subtyping in the labels of the
pointed-to locations. Therefore, our algorithm is directional
up to one level below symbols related by assignments. It
has the same e�ect as Steensgaard's algorithm at all lower
levels in the points-to representation.

3.2 Declarative speci�cation

We present the algorithm as a set of non-standard type in-
ference rules over a simple language of pointer related as-
signments (Figure 4). These rules are similar to the rules
used by Steensgaard [Ste96b, pp. 35]. Every rule in Figure
4 extends the corresponding rule from [Ste96b] by introduc-
ing a new form of type inequality at the assignment level, as
illustrated in Figure 3. The domains for the type inference
described by these rules are as in Figure 3 (d).

The rule for x = &y says that the pointed-to location of
x must include the symbol y in its label, and this pointed-to
location must have the same contents as the location of y.
The rule for x = �y says that the pointed-to location of y
and the location of x are related by an assignment, while the
rule for �x = y says that the location of y and the pointed-to
location of x are related by an assignment.

The rules shown in Figure 4 operate on a toy pointer lan-
guage. However, they represent the essence of the pointer
analysis. The complete algorithm includes rules for function
de�nitions and calls, function pointers, and indirect function
calls. The type rules are extended to handle these features
exactly as in Steensgaard's analysis. Function calls give rise
to implicit assignments from arguments to formal parame-
ters and from return expressions to calling contexts. These
implicit assignments are processed with one level of ow, in
exactly the same manner as explicit assignments. We omit
details of the extensions for brevity.

3.3 Operational algorithm

Every symbol referenced in the program is associated with a
unique location on demand. The program is processed one
assignment at a time, including implicit assignments gener-
ated by function calls. At every assignment, locations are
uni�ed as necessary to satisfy the requirements imposed by
the rules in Figure 4. We delay processing of the subset con-
straints between labels by introducing ow edges between
locations, as shown in Figure 3 (c). The location resulting
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(d) s 2 Symbols
� 2 Locations ::= (';�)
' 2 Ids ::= fs1 ; : : : ; sng
� 2 Values ::= ? j ptr(�)

A ` x : (';�) A ` y : ('0; �0)

�0 = �

A ` welltyped(x = y)

Figure 2: Assignment processing in Steensgaard's algorithm. The graphs in (a) and (c) above represent points-to information
before and after processing x = y. Figure (b) depicts the uni�cation actions, shown using dashed boxes, triggered by the
assignment. The type rule in (d) above describes assignment processing declaratively.
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(d) s 2 Symbols
� 2 Locations ::= ('; �)
' 2 Ids ::= fs1 ; : : : ; sng
� 2 Values ::= ? j ptr(�)

ptr('; �) � ptr('0; �) , ' � '0

A ` x : (';�) A ` y : ('0; �0)

�0 � �

A ` welltyped(x = y)

Figure 3: Assignment processing in the one level ow algorithm. The graphs in (a) and (c) above represent points-to
information before and after processing x = y. Figure (b) depicts the actions triggered by the assignment. The edge labeled
sym is a ow edge relating labels of locations. The domains and type rule in (d) above provide a declarative speci�cation of
assignment handling.
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A ` x : ('; �) A ` y : ('0

; �
0)

�0 � �

A ` welltyped(x = y)

A ` x : ('; �) A ` y : �

ptr(�) � �

A ` welltyped(x = &y)

A ` x : ('; �) A ` y : ('0

; ptr(� ))

� = ('00

; �
00)

�00 � �

A ` welltyped(x = �y)

A ` x : ('0

; ptr(�)) A ` y : ('; �)

� = ('00

; �
00)

� � �00

A ` welltyped(�x = y)

Figure 4: The one level ow algorithm, expressed as a set of type inference rules over a simple language of pointer related
assignments.

from the uni�cation of two locations inherits the ow edge
successors of both the uni�ed locations. Once processing of
the entire program is complete, labels are computed for all
of the locations in the points-to representation by a ow pro-
cessing step: Every symbol is associated with every location
that is reachable, via ow edges, from the location initially
associated with the symbol.

3.4 Comparison with Andersen's algorithm

The one level ow algorithm can be viewed as a restriction
of Andersen's algorithm, in the following way: We intro-
duce subtyping rules in the label component of locations.
Andersen's algorithm introduces subtyping in the contents
component of locations as well. The e�ect of an assignment
from y to x in Andersen's algorithm is shown in Figure 5.
The rule in Figure 5 (a) says that the program is correctly
typed if and only if the label of the pointed-to location of y
is a subset of the label of the pointed-to set of x, and the
contents of the pointed-to location of y is a subtype of the
contents of the pointed-to location of x. The structural sub-
typing relations introduced by Andersen's algorithm make it
expensive, but also lead to greater precision. His algorithm
has a worst-case quadratic space requirement, and worst-
case cubic running time.

Thus, the one level ow algorithm obtains the precision
of Andersen's algorithm for top level pointers, while it ob-
tains the same precision as Steensgaard's algorithm for all
other pointers. The one level ow algorithm is not always
less precise than Andersen's algorithm on pointed-to point-
ers. Consider the program in Example 1. The one level
ow algorithm forces s1, s2, and s3 to hold the same con-
tents. Suppose s1, s2, and s3 are locals. Then they can
be referenced within foo and bar only indirectly, via �p and
�q. Even a fully directional analysis such as Andersen's
algorithm must treat accesses of �p and �q identically, be-
cause updates of �p must be reected in �q, and vice versa.
Thus, there is no further loss of precision in this case be-
cause of uni�cation at lower levels. On the other hand, if
s1 is updated explicitly to hold a pointer value, Andersen's
algorithm will avoid associating this value with explicit ref-
erences to the values of s2 and s3, thereby gaining precision
over the one level ow algorithm. Our empirical evidence
suggests that this case occurs infrequently in C programs.

3.5 Correctness

We claim that the type rules in Figure 4 represent a cor-
rect ow-insensitive pointer analysis. This follows from the
observation that every rule in Figure 4 can be viewed as
a restriction of the corresponding rule from a type system
describing Andersen's algorithm, which we assume to be
correct. The operational algorithm records ow edges at
assignments to represent the subset relationships on labels
imposed by the type rules. When the entire program is pro-
cessed, every subset constraint is represented by some ow
edge in the points-to graph. The only exception is when
two nodes initially connected by a ow edge are uni�ed into
a single node, in which case the subset constraint is triv-
ially satis�ed by the resulting node. The �nal ow step is
implemented as reachability on ow edges. This ensures
that after all labels are computed, the labels at every pair
of nodes connected with a ow edge satisfy the subset con-
straint represented by the corresponding ow edge.

3.6 Complexity

The algorithm has two steps: An assignment processing
step, which produces a points-to graph with ow edges, and
a ow propagation step. The �rst step has the same com-
plexity as Steensgaard's algorithm: Linear space, and almost
linear running-time (in the size of the input program). The
number of nodes created during the �rst step is proportional
to the number of assignments in the program. Every node
has a single pointer edge. Finally, every assignment intro-
duces a single ow edge. Therefore, the space requirement
for the �rst step is linear. The running-time is determined
by the cost of assignment processing. Every assignment re-
quires lookup of four pointed-to locations, the addition of
a single ow edge, and a uni�cation step. A single uni�-
cation, which takes constant time, may trigger other uni-
�cations, but the total number of uni�cations is bounded
by the number of distinct nodes. The amortized cost of N
lookup operations andM uni�cation operations using a fast-
union-�nd structure is O(N�(M;N)) where � is the inverse
Ackermann's function [Tar83]. Therefore, the initial phase
of the algorithm has almost linear running time.

The ow step involves reachability over the linear graph
structure, for every symbol associated with a node in the
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' 2 Ids ::= fs1 ; : : : ; sng
� 2 Values ::= ? j ptr(�)

ptr('; �;�) � ptr('0; �0; �0)
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A ` x : ('; �;�) A ` y : ('0; �0; �0)

�0 � �

A ` welltyped(x = y)

Figure 5: Assignment processing in Andersen's algorithm. The domains and type rule in (a) above, taken from [FFSA98],
provide a declarative speci�cation of assignment handling. The graph in (b) above represents the e�ect of the assignment
action, which is to induce subtyping relationships between the pointed-to locations of y and x. These are represented pictorially
by edges labeled sym and con, which are ow edges relating labels and contents, respectively. Note that the graph in (b) is
a simpli�cation of the type rule in (a), which induces ow edges on contents in both positive and negative directions in the
points-to representation.

graph. In the worst case, each symbol is added to the set of
symbols (using constant-time append operations) at every
node. Therefore, this step has worst-case quadratic time and
space requirements. The ow step can also be performed
in a demand-driven manner. The points-to set at a single
dereference point can be obtained by a single linear walk of
the points-to representation.

4 Experiments

In this section, we �rst describe our implementation of the
one level ow algorithm, and our experimental setup. We
then present our results.

4.1 Implementation and experimental setup

We have produced a modular implementation of Steens-
gaard's algorithm using the AST Toolkit [AST], which is
itself an extension of the Microsoft Visual C compiler. Our
implementation, which includes a client and a linker, han-
dles all of the features of C. The client analyzes individual
compilation units, and produces object �les of a special kind.
Each object �le contains a partial points-to graph, and a ta-
ble that associates symbols and functions with nodes in the
graph. The linker produces global points-to information by
unifying locations corresponding to the same symbol or func-
tion from di�erent object �les. Local and static symbols,
which are also passed on to the linker, are assigned glob-
ally unique names. We model library functions for which
source code is not available using hand-coded stub func-
tions that simulate the pointer e�ects of the corresponding
library functions. We treat library functions polymorphi-
cally, by cloning the partial points-to graphs corresponding
to these functions at call sites. In order to model allocator
functions, we automatically create a dummy symbol repre-
senting a unique memory location at each call to an allocator
function. We do not model constant strings.

Our implementation includes a garbage collector, which
periodically releases memory associated with locations that
are forwarded by uni�cation. Garbage collection is an im-
portant feature of our scalable pointer analysis; it allows us
to process a 1.4 MLOC program without disk thrashing on

a machine with 256MB of memory. Our base implementa-
tion includes a variety of precision-enhancing features (in-
cluding pending lists, structure layout mapping, k-limited
outdegree, and �ltering of indirect calls using lengths of ar-
gument lists), which can be enabled using command line
switches. In order to measure the e�ectiveness of our tech-
nique accurately, we did not enable any of these features
(except pending lists) in our experiments.

We implemented the one level ow algorithm by extend-
ing the assignment rule in our base analysis, and adding a
ow computation step to the link phase. These changes took
less than a day to implement. Apart from all of the usual
testing, we veri�ed the correctness of our implementation in
three ways: First, we compared our implementation against
an independent implementation of Steensgaard's analysis
produced by our group [FRD00], and against an implemen-
tation of Steensgaard's analysis produced using the BANE
framework at UC Berkeley [FFSA98]. All three implemen-
tations produce identical points-to information for all of the
SPECINT95 benchmark programs. Second, we tested our
implementation of the ow computation step by treating
ow edges bi-directionally and verifying that we obtain ex-
actly the same points-to information as with Steensgaard's
algorithm. Third, the striking similarity between the points-
to information computed by the one level ow algorithm and
Andersen's algorithm provides a strong indication of the cor-
rectness of the one level ow algorithm.

4.1.1 Comparison with Andersen's algorithm

Although we have implemented Steensgaard's algorithm and
the one level ow algorithm, we have not implemented An-
dersen's algorithm. Therefore, we used an implementation
of Andersen's algorithm based on the BANE framework to
obtain precision measurements for Andersen's algorithm on
all of our benchmark programs (except Microsoft Word, to
which Andersen's algorithm does not scale). The BANE
framework does not include an implementation of the one
level ow algorithm. Further, BANE uses a di�erent front-
end than our infrastructure. This raises a natural ques-
tion about the validity of our experiments, which compare
the points-to information produced by all three algorithms
on a set of benchmark programs. In order to answer this
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Program LOC AST nodes Analysis time (secs) Average thru-deref size
Ste96 Flow Ste96 And94 Flow

compress 1,904 2,234 0.03 0.05 2.1 1.22 1.22
li 7,602 23,379 0.43 0.67 287.7 185.62 185.62

m88ksim 19,412 65,967 0.79 1.22 86.3 3.19 3.29
ijpeg 31,215 79,486 0.97 1.51 17.0 11.76 11.78
go 29,919 109,134 0.89 1.42 45.2 14.79 14.79
perl 26,871 116,490 1.21 2.12 36.1 22.22 22.22
vortex 67,211 200,107 3.35 5.66 1,064.5 45.54 59.30
gcc 205,406 604,100 5.70 9.45 245.8 7.71 7.72

Word97 2,150,793 5,961,129 61.34 126.83 27,258.6 11,219.5

Table 1: Experimental data. For each benchmark program, the table above shows the lines of code and AST node count, the
running time of Steensgaard's algorithm (Ste96) and the one level ow algorithm (Flow), and the average size of points-to
sets at static dereference points for Steensgaard's algorithm (Ste96), Andersen's algorithm (And94), and the one level ow
algorithm (Flow).

question, we spent several months synchronizing the two in-
frastructures so that they produce identical points-to infor-
mation using Steensgaard's analysis. This process involved
making several changes to the two infrastructures to ensure
that library functions are treated polymorphically, symbols
are counted similarly, etc. Because the two infrastructures
have now been \normalized" to produce identical points-to
information for Steensgaard's analysis, it is possible to di-
rectly compare the precision of the one level ow algorithm
with that of Andersen's algorithm.

4.1.2 Benchmark programs

Table 1 shows our benchmark programs, consisting of the in-
teger benchmarks from SPEC95, and a version of Microsoft
Word. For each benchmark, we list the total lines of code in
source �les (including comments and blank lines), as well as
the number of AST nodes, which we feel is a more accurate
measure of program size.2 Each benchmark was analyzed
using Steensgaard's analysis, the one level ow algorithm,
and Andersen's algorithm. We report the analysis time, av-
eraged over 5 runs, for Steensgaard's analysis and the one
level ow algorithm. Analysis time includes time to analyze
each compilation unit (not including parse time), time to
write out object �les, and time taken by the link phase. Link
phase time includes time to read in all of the object �les, per-
form uni�cations, ow symbols, and compute points-to sets
exhaustively at all static dereference points in the program.
All of our experiments were conducted on a Dell 610 desk-
top PC running Windows NT 4, with 512MB RAM and a
single 450Mhz Intel Xeon processor. We report the average
size of points-to sets at static dereference points using all
three algorithms. As mentioned earlier, we are unable to
run Andersen's algorithm on Microsoft Word. We do not
consider array accesses (which are determined using the de-
clared types in the program) as dereference points. We omit
data for points-to sets at indirect call sites, although the one
level ow technique can also be applied to function pointers.

4.2 Results

In this subsection, we present results that support the fol-
lowing claim: The one level ow algorithm has the scaling

2Word 97 and gcc contain roughly 1.4 MLOC and 140,000 LOC
respectively, excluding comments and blank lines.

properties of Steensgaard's algorithm, and the precision of
Andersen's algorithm.

4.2.1 Performance vs Steensgaard's algorithm

In Figure 6, we chart the running times from Table 1 for
Steensgaard's algorithm and the one level ow algorithm.
We use the ratio of running-time (milliseconds) to program
size (AST node count). The chart shows that for both al-
gorithms, this ratio is fairly steady as program size grows,
indicating that the analyses scale linearly with program size.
The one level ow algorithm has two di�erent overheads
when compared with Steensgaard's algorithm: The overhead
of reading and writing larger object �les (fewer uni�cations
are performed), and the overhead of the ow step. The one
level ow algorithm requires roughly twice as much time as
Steensgaard's algorithm over all of the test programs.

We reduced the time required for the ow step using a
simple factoring technique: We identify the node with the
greatest number of outgoing ow edges, via a single linear
scan of the points-to graph. We then perform reachability
from this node exactly once, appending the list of symbols
that reach this node to the list of symbols at every node
reachable from this node. This optimization eliminates re-
peated scans of a large portion of the points-to graph. It is
possible to extend this idea to more than a single node, but
we did not �nd that necessary.

To save space, we do not present data on space consump-
tion. The one level ow algorithm requires more memory
than Steensgaard's algorithm, because fewer locations are
reclaimed by the garbage collector during the link phase,
and because symbols may be associated with multiple lo-
cations after the ow step. Space consumption is still very
low. For instance, the one level ow algorithm requires less
than 200MB of space for Word97.

4.2.2 Precision vs Andersen's algorithm

In Figure 7, we chart the average sizes of points-to sets at
dereference points, using Andersen's algorithm and the one
level ow algorithm. The size of the points-to set at a deref-
erence point is measured as the number of program symbols,
including dummy symbols produced at allocation sites, in
the points-to set of the dereferenced expression. Because
the averages vary greatly across the test programs, we have
normalized the averages against Steensgaard's algorithm to
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Figure 8: Distributions of points-to set sizes at dereferences. Each table above shows, for a given benchmark, the number of
static dereference sites associated with points-to sets of given sizes by Andersen's algorithm and the one level ow algorithm.
Entries for the one level ow algorithm are shown as deviations from the entries for Andersen's algorithm. Only non-zero
deviations are shown. The distribution for vortex contains too many di�erent sizes for them all to be listed individually.
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Flow 12670 21571 8502 2842 2234 1240 3423 4259 120 136386 11 0

Word97� all static dereferences
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Word97� updates through static dereferences

Figure 9: Distributions of points-to set sizes at dereferences in Word97. The �rst table above shows the number of static
dereference sites in Word97 associated with points-to sets of given sizes by Steensgaard's algorithm and the one level ow
algorithm. The second table includes only dereferences representing updates.
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Figure 10: Distributions of dereferences with small points-to sets in Word97. The chart in (a) above shows the percentage
of static dereference sites in Word97 associated with points-to sets of various small sizes by Steensgaard's algorithm and the
one level ow algorithm. The chart in (b) above includes only dereferences representing updates.

represent the relative improvements obtained by the two al-
gorithms. All three analyses were run with the same set-
tings, including polymorphic library functions, and pending
lists (not needed for Andersen's analysis). The chart shows
that the precision of the one level ow algorithm is very close
to that of Andersen's algorithm for all of our test programs.

Figure 8 shows the distribution of dereferences, using
the two algorithms, for all of the SPECINT95 benchmark
programs. For six of these programs (compress, m88ksim,
li, perl, go, ijpeg), the distributions are either identical or
almost identical. For gcc, the only di�erence is that Ander-
sen's algorithm computes more empty points-to sets than
our algorithm. Empty points-to sets are produced at deref-
erence points because of two primary reasons: First, the
benchmarks contain functions that are never called. Some
of these functions have pointer parameters that are derefer-
enced. Second, we do not model constant strings.

The implementation of Andersen's algorithm in BANE
is lazy: If a pointer p has no points-to set, and its points-to
target �p is assigned a pointer value, the assigned pointer
value is not propagated to dereferences ��p. Our algorithm
sometimes propagates such values eagerly via uni�cations,
and produces fewer empty points-to sets as a result. This
e�ect is seen in the distribution for gcc.

Intuitively, there are two reasons why the results of the
one level ow algorithm so closely mimic the results of An-
dersen's algorithm: First, our algorithm is as precise as An-
dersen's algorithm for top level pointers (i.e., pointers that
are not themselves pointed to by other pointers). Top level
pointers dominate in real code, because of parameter pass-
ing. Second, even in cases where there are pointed-to point-
ers, these often arise because addresses of pointer-valued
objects (or structures with pointer-valued �elds) are passed
to functions. As pointed out in Section 3.4, Andersen's al-
gorithm must treat accesses through dereferences of these
pointers bi-directionally.

The only benchmark with non-trivial di�erences in the
distributions is vortex. This is because vortex contains sev-
eral instances of pointers to pointers where the target sym-
bols of the top level pointers are both updated and refer-
enced directly.

4.2.3 A closer look at Word97

The distributions in Figure 8 show that the one level ow
algorithm represents a method for obtaining essentially the
precision of Andersen's algorithm in a manner that scales
easily to large programs. However, it may be argued that
for the only very large program in our test suite, the average
obtained using our algorithm is too large for the analysis
to be useful, even if this average is much lower than that
obtained using Steensgaard's algorithm.

Figure 9 shows the distribution of dereferences for Word
97, using Steensgaard's algorithm and the one level ow al-
gorithm. We show the distribution for all dereferences and
updates through dereferences. The �gure shows that our al-
gorithm has two e�ects: It reduces the size of the dominant
points-to set, and it shifts the distribution to include more
small-sized points-to sets. The latter e�ect shows the value
of the one level ow algorithm. The shift in distribution is
shown visually in Figure 10. For instance, the distribution
of updates through dereferences using our algorithm is bi-
modal: Over forty percent of these updates have very small
points-to sets. A client static analysis can take advantage of
the precise information at these updates, while making the
usual conservative assumptions that are necessary when no
pointer information is available at the remaining updates.

5 Related work

In recent years, there has been much work in the design
of pointer analysis algorithms. Techniques described in the
literature come in a variety of avours: Flow-sensitive anal-
yses, such as [LR92, CBC93], take into account the order in
which statements are executed, while ow-insensitive anal-
yses, such as [And94, Ste96b], assume that statements can
execute in any order. Similarly, context-sensitive or poly-
morphic analyses [EGH94, WL95] keep di�erent call sites to
the same callee function apart in the analysis, while context-
insensitive analyses do not. Each of these choices introduces
a tradeo� between scaling and precision. In addition, the
precision of any pointer analysis can be improved through
the use of orthogonal techniques such as structure layout
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mapping [Ste96a, YHR99, RFT99], or shape analysis of heap
allocated data structures [GH96, SRW99].

Our goal is an algorithm that scales to large programs,
while providing precision comparable to Andersen's algo-
rithm. The previous work closest to ours is the multiple
outdegree algorithm of Shapiro and Horwitz [SH97b], which
attempts to bridge the gap between Steensgaard's and An-
dersen's analyses by k-limiting the outdegree of nodes in
the points-to graph. Because the average case memory re-
quirement of their algorithm is k times that of Steensgaard's
algorithm, only small values of k can be used for larger pro-
grams. However, large programs require large fanout in the
points-to graph, as the same utility functions are called from
more call sites. To overcome this problem, Shapiro and Hor-
witz propose a scheme in which the k-limited algorithm is
run multiple times. This scheme relies on performing inter-
sections of points-to sets from multiple runs, which can be
expensive. It is also critically dependent on the manner in
which symbols are partitioned. We believe that our algo-
rithm is more practical than their multiple run algorithm
because our algorithm appears to scale better to larger pro-
grams, both in terms of time and space requirements and in
terms of precision.

The program in Figure 1 (a) is an example of a common
case of pointer usage involving procedure calls. An alterna-
tive method for improving precision in such cases is to use a
context-sensitive version of uni�cation-based pointer analy-
sis. One approach, exempli�ed by Rehof's implementation
from [FRD00], is to use polymorphic type inference to build
an instantiation graph that records ow information. This
approach has been found to scale to large programs in prac-
tice. Liang and Harrold have developed a second approach
that operates on an explicit call graph [LH99]. However,
they have only tested this approach on very small programs
without indirect calls. We have found that in larger pro-
grams, which contain many indirect calls and large points-to
sets for function pointers, call graphs become unmanageably
large. We have found this to be true even after using the
�ltering techniques proposed in [AG98]. Therefore, we be-
lieve that polymorphic type inference is the best option for
scalable context-sensitive pointer analysis.

The drawback of a context-sensitive extension of Steens-
gaard's analysis is that it introduces directionality only at
the implicit assignments induced by function calls, while
explicit assignments are treated bi-directionally. This may
limit precision improvement. For instance, we have found
that polymorphism reduces the average size of points-to sets
at dereferences in gcc from SPEC95 to approximately 100, as
compared to the average of 8 produced by the one level ow
algorithm. On the other hand, there are situations where a
polymorphic analysis would provide precision gains not pro-
vided by the one level ow algorithm. A natural question
that arises is whether the two techniques can be combined
for maximum bene�t. One solution is to use the technique
of polymorphic ow analysis proposed in [FRD99].

Much work has also been done from the other direc-
tion, namely on improving the scaling behaviour of Ander-
sen's algorithm. The implementation of Andersen's analy-
sis developed at UC Berkeley uses on-line cycle elimination
[FFSA98] and projection merging [SFA00] to speed up the
analysis substantially. Rountev and Chandra have used a
pre-processing step to further improve performance by a fac-
tor of two [RC00]. In spite of these e�orts, Andersen's algo-
rithm does not yet scale to programs beyond 500KLOC. We
believe that our use of a highly eÆcient uni�cation engine

at all but the critical regions of the points-to graph avoids
most of the \wasted" work done by Andersen's algorithm.

We arrived at our one level ow algorithm by examining
large amounts of code, and developing a succession of al-
gorithms that each went one step further than the previous
algorithm in terms of improving precision over Steensgaard's
approach. The one level ow technique that resulted from
this exercise is an example of subtyping restricted to one
level in the type structure. This idea has been previously
used in other contexts. It is called \simple closure analysis"
in [Hen92] and is the basis of eÆcient binding-time analysis
[Hen91], closure analysis and dynamic type inference algo-
rithms. In a subtype setting, the restriction to top level is
characterized by the absence of \induced" or \deep" subtyp-
ing rules. Our work shows that this restriction of subtyping
has a useful application in the domain of pointer analysis.

6 Conclusions

We believe that our one level ow algorithm provides a prac-
tical method for obtaining precise ow and context insensi-
tive points-to information on large C programs. However,
this is only the �rst step in our long term agenda of im-
proving the precision of scalable pointer analysis. There are
several logical next steps in this direction:

� Combining the one level ow technique with polymor-
phic pointer analysis, using the technique of polymor-
phic ow analysis [FRD99]

� Combining the one level ow technique with orthogonal
precision enhancements such as structure �eld disam-
biguation and call �ltering

� Extending the one level ow technique by introducing
approximations to ow-sensitivity such as SSA form

Our algorithm is a technique that exploits one com-
mon case of pointer usage in C programs. There are likely
many remaining opportunities for improving the precision
of pointer analysis.

The one level ow technique provides a simple method
for improving the precision of any uni�cation-based analysis.
We have found that pointer analysis of C programs is one
setting in which this approach provides substantial bene�t;
there are probably many others.
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