% Machine
' Learning
(1/2)

#1

Outline
e This Lecture (WesPieter)

- Intro to Machine Learning

- Relationship to Programming Languages
- Taxonomy of ML Approaches

- Basic Clustering

- Basic Linear Models

e Next Lecture (Ray)

- Advanced ML Algorithms (e.g., Baysean Learning,
Decision Trees, Support Vector Machines, Neural
Networks...)

- Concerns and Evaluation Techniques

#2

Modeling Bug Report Quality

Pieter Hooimeijer and Westley Weimer
University of Virginia
Charlottesville, VA. 22903

er, weimer}@cs.virginia.edu

ABSTRACT

Software developers spend a significant portion of their re-
sources handling user-submitted bug reports. For software
that is widely deployed, the number of bug reports typically
outstrips the resources ilable to triage them. As a result,
some reports may be dealt with too slowly or not

We present a descriptive model of bug report guality based
on a statistical analysis of surface features of over
publicly available bug reports for the Mozilla Firefox proj
T'he model predicts whether a bug report is triaged within
a given amount of time. Our analysis of this model has im-
plications for bug reporting systems and suggests features
that should be emphasized when composing bug reports.

We evaluate our model empirically based on its hypothet-
ical performance as an antomatic filter of incoming bug re-
ports. Our results show that our model performs signifi-
cantly better than chance in terms of precision and recall.
In addition, we show that our model can reduce the overall
cost of software maintenance in a setting where the average
cost of addressing a bug report is more than 2% of the cost
of ignoring an important bug report.

Categories and Subject Descriptors

D |Software Engineering|: Testing and Debugging
Debugging aids; D.2.8 [Software Engineering|: Metri
D.2.9 [Software Engineering|: Ma ment
D20 [Software Engineering|: Management
mation

Life cycle:
Time esti-

General Terms

J':‘"JU‘JUIIH'.\\. J':.‘[?"[i[]l"[][il[i11[]. JJllUlilU J"iu'[‘l[.\. .\Jil.“il,'_’."“l"“[.
Measurement

"This research was supported in part by Science Foun-
dation Grants CNS (42 1 CNE i and Air Force
Office of Scientific r ' rifts
from Microsoft 8 The information presented here does
not necessarily reflect the position or the policy of the govern-
ment and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to poston servers or to redistribute to lists, requires prior specific
permission andlor a fee.

Al Movember 549, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-407/0011 ..

Keywords

bug report tringe, issue tracking, statistical model, informa-

tion retrieval

1. INTRODUCTIO

A significant portion of overall software development is
spent addressing defects. Boehm and Basili claim that main-
tenance consumes over 70% of the total lifecyele cost of a
software product [5]. Modifying existing code, dealing with
defects, and otherwise evolving software are major parts of
that maintenance [12]. Large projects often use bug report-
ing and triage systems to cope with defect reports | Howe-
ever, the mumber of reports typically exceeds the resources
available to address them: rather than hin'iu,l.*, the devel-
opment resources to deal with every defect, even mature
software projects are forced to ship with both known and
unknown bugs [10]. A lack of resources often constrains de-
velopers to deal with some bug reports too slowly or not at
all.

A further complication is that many submitted bug re-
ports may be spurious duplicates or descriptions of non-
defects. Previous studies have found that as many as 36%
of bug reports were duplicates or otherwise invalid [3]. The
triage work in evaluating bug reports consumes developer
time and effort [14]. Bug report triage and evaluation are
a significant part of modern software engineering for many
large projects.

In this paper we attempt to reduce bug report triage costs
by separating the wheat from the chaff. We present a model
of hu,-.*. report uuillit_\' that [?[|'i]il'[>~ whether 1]1'\'1'[:;[:1'(.\ will
choose to address a bug report, by measuring whether the
report is addressed within a given amount of time. We do
this by classifying bug reports as either “cheap” or “expen-
sive” to tringe. For the purposes of this paper, triage is the
act of inspecting a bug report, understanding its contents,
and making the initial decision regarding how to address the
report.

Our model is based on features that can easily be hered
from bug report submissions, without referring to past bug
reports. We base our model on a statistical analysis of over
27,000 bug reports from the Mozilla Firefox project, and we
experimentally validate its predictive power. Our model can
be used by developers to filter incoming bug reports or to
aid with bug report prioritization.

In practice, Mozilla and many other open source software
projects make use of bug reporting and triage software [2]
that is open to the public. The assumption is that allow-
ing users to report and potentially help fix bugs improves

Machine Learning Defined

 Machine learning is a subfield of Al
concerned with algorithms that allow
computers to learn. There are two types of
learning:
- Deductive learning uses axioms and rules of

inference to construct new true judgments. See
“Automated Theorem Proving” lecture.

- Inductive learning method extract rules and
patterns out of massive datasets. Given many
examples, they attempt to generalize. We'll
discuss this now.

#4

#

i
%
z
ik
\‘ ﬂ

WIlATqINIlIIGTWE lHlIINIIIEﬂ

Machine Learning in Context

e Machine Learning is sometimes called the part
of Al that works in practice. (cf. “Al complete”)

« ML combines statistics and data mining with
algorithms and theory
e Successful applications of ML:

- detecting credit card fraud; stock market
prediction; speech and handwriting recognition;
medical diagnosis; market basket analysis; ...

#6

ML in PL?

« Why does ML belong in a PL course?

Westley Weimer, George C. Necula: Mining Temporal Specifications for Error Detection. Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 2005: 461-476

Pieter Hooimeijer, Westley Weimer: Modeling bug report quality. Conference on Automated Software
Engineering (ASE) 2007: 34-43

Westley Weimer, Nina Mishra: Privately Finding Specifications. |IEEE Trans. Software Engineering 34(1):
21-32 (2008)

Nicholas Jalbert, Westley Weimer: Automated Duplicate Detection for Bug Tracking Systems.
Conference on Dependable Systems and Networks (DSN) 2008

Raymond P.L. Buse, Westley Weimer: Automatic Documentation Inference for Exceptions.
International Symposium on Software Testing and Analysis (ISSTA) 2008: 273-281

Raymond P.L. Buse, Westley Weimer: A Metric for Software Readability. International Symposium on
Software Testing and Analysis (ISSTA) 2008: 121-130 (best paper award)

Raymond P.L. Buse, Westley Weimer: The Road Not Taken: Estimating Path Execution Frequency
Statically. Submitted to International Conference on Software Engineering (ICSE) 2009 on September 5.

Elizabeth Soechting, Kinga Dobolyi, Westley Weimer: Semantic Regression Testing for Tree-Structured
Output. Submitted to International Conference on Software Engineering (ICSE) 2009 on September 5.

Claire Le Goues, Westley Weimer: Specification Mining With Few False Positives. Submitted to Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) 2009 on October 9.

#7

ML in PL?

e Often in PL we try to form judgments about
complex human-related phenomena

e ML can help form the basis of an analysis:
- e.g., readability, bug reports, path frequency, ...

e or ML can help automate an action:

- e.g., specification mining, documentation,
regression testing ...

e PL is often concerned with scalable analyses,
which give rise to huge data sets

- ML helps us to make sense of them

#8

| DON'T OFTEN
SUBSTITUTE-TEACH

BUT WIIEN I Ill] |
I’HEFEB:I’UWING

Today's Programming

W Sumit Gulwani:
_ | Automating String Processing
In Spreadsheets using Input-

Output Examples
POPL 2011 (Austin, Texas)

#10

TtKiM

e Is this machine learning?

 How does this approach relate to other
Al techniques?

 What are the inputs and outputs for this
approach?

#11

What You'll Learn

 What kinds of problems can & can't it solve?

e What should you know about ML?

- How to cast a problem in ML terms (e.g., creating
a descriptive model)

- How to pick the right ML algorithm

- How to evaluate the results
e Relevant statistics (e.g., precision, recall)
 Relative feature importance
e Practical details

#13

No Silver Bullet

ML can be handy, but using it takes practice

e Researchers often incorrectly apply ML
without understanding its principles

- “They threw machine learning at it ...”
e ML rarely gives guarantees about performance

e ML takes creativity
- Forming the model (e.g., picking features)
- Interpreting the results

#14

ML Algorithm Types
e Output Types

- Numeric. Examples: How tall will you be, based
on your birth weight? How much will you charge to
your credit card this month, based on last month?

e ML example: linear regression

- Binary. Example: Does this image contain a
human face or not? Is calling A() after B() a bug or
not?

e ML example: decision tree

- Discrete. Example: Is this office, game or system
software? How many sorts of computer intrusions
are there, based on attacker behavior?

« ML example: k-means clustering 415

ML Algorithm Types

e Input Types

- Supervised. Some provided training examples are
labeled with the right answer. Example: here are
five images with faces and five without to get you
started, now tell me if this next image has a face
or not; here are five resolved bug reports and five
that were never resolved, now tell me if this next
report will get resolved or not.

- Unsupervised. No labeled answers. Example: here
are ten network intrusions: how would you
organize them? Here's some seismic data: notice

anything?

#16

Clustering

e Clustering is the classification of objects into
different groups

e Clustering partitions a dataset into subsets
such that elements of each subset share
common traits

- Most commonly: proximity in some distance
metric

e Clustering is an unsupervised learning method

e Hierarchical clustering finds successive
clusters using previously-established clusters

- Top-down = divisive. Bottom-up = agglomerative.
#17

Clustering Example

e Hierarchical agglomerative clustering,
Euclidean distance

A B C
D

#18

Clustering Example

e Hierarchical agglomerative clustering,
Euclidean distance

a &>

#19

Clustering Example

e Hierarchical agglomerative clustering,
Euclidean distance

#20

Clustering Example

e Hierarchical agglomerative clustering,
Euclidean distance

=

#21

Clustering Intuition

 Why is {A,C} {B,D} a bad clustering?

#22

K-Means Clustering

e The objects in a cluster should be close to
each other

e Given a cluster C and its mean point m, the
badness (i.e., error or intra-cluster variance)
of the cluster is the sum, over all objects x in
C, of distance(x,m).

e The objective of the k-means algorithm is to
partition objects into k clusters such that the
sum of the intra-cluster variances is
minimized

#23

K-Means Algorithm

make k initial mean points somehow
each one is (will be) the center of a cluster!

assign each object to a cluster randomly

while you're not done
put each object in the cluster it is closest to
(i.e., in the cluster with the mean point it is closest to)

for each cluster, recalculate where the mean point
IS

(i.e., average all the objects now in the cluster)

#24

K-Means Example (01/10)

#25

K-Means Example (0210)

#26

K-Means Exampl

(

03/10)

#27

K-Means Exampl (04 10)

#28

K-Means Exampl (05 10)

#29

K-Means Exampl (06 10)

#30

K-Means Exampl (07 10)

#31

K-Means Exampl (08 10)

#32

K-Means Exampl (09 10)

#33

K-Means Exampl (1010)

#34

K-Means is Usually Decent

But What If You Don't Know K?

OO

Parameter Selection

e Glenn Ammons, Rastislav Bodik, James R.
~ Larus: Mining spec1f1_catlons POPL 2002: 4-16

——— - e A

set of interactions Select ed (line *) always has one element, and
the recursion never branches. With an appropriate implementation
of OfLeastKinds (which sorts the interactions), the algorithm
runs in that case in time proportional to n log n. In our experience,
the time spent running Standardi ze is an insignificant part of
the scenario extraction time.

4.2 Automaton learning

This section presents the algorithms and data structures used in
learning the specification automaton. The automaton A is an NFA
with edges labelled by standardized interactions, whose language
includes the most common substrings of the scenario strings ex-
tracted from the training traces, plus other strings that the PFSA
learner adds as it generalizes. Automaton learning has two steps.
First, an off-the-shelf learner learns a PFSA. Then, the corer re-
moves infrequently traversed edges and converts the PESA into an
NFA.

The PESA learner is an off-the-shelf learner [22] that learns a
PFSA that accepts the training strings, plus other strings. The
learner is a variation on the classic k-tails algorithm [4]. Briefly,
the k-tails algorithm works as follows. First, a retrieval tree is con-
structed from the input strings. The algorithm then computes all

strings df length up to k (k-strings) ghat can be generated from each

state in the trie. It two states g, and g generate the same k-strings,

they are merged. The process repeats until no more merges are pos-
sible. The PFSA learner modifies k-tails by comparing how likely
two states are to generate the same k-strings.

The resulting PFSA accepts a superset of all the strings in the
training scenarios, due to the generalizations performed by the
learner. The]parameter /N that controls the size of the training sce-
narios is choSen Dy the uscr to be 1arge cnougn to include all of
the interesting behavior. It is therefore very likely that the ends of
the training scenarios contain uninteresting behavior. This is in fact
what we see experimentally: the typical PFSA has a “hot” core with
a few transitions that occur frequently, with the core surrounded by
a “cold” region with many transitions, each of which occurs infre-
quently. The corer whittles away the “cold” region, leaving just the
“hot” core.

The corer can not simply drop edges with low weights. Consider
the PFSA in Figure 19 (edge labels are not important and are omit-
ted). Four edges have a weight of 5, which is low compared to the
three edges with a weight of 10000. However, any string through
this PFSA must traverse the edge out of the start state and the edge
into the end state. Despite their low weight, a string is more likely
to traverse these edges than it is to traverse the edges with a weight
of 10000. Thus, a better measure of an edge’s “heat” is its likeli-
hood of being traversed while generating a string from the PFSA.
The problem of computing this measure is known as the Markov

#37

Linear Regression

e If only we could get something to pick those
parameters for us!
- Let's look at an algo that doesn't need them.

e Linear regression models the relationship
between a dependent variable (what you
want to predict) and a number of
independent variables (features you can
already measure) as a linear combination:

- Dep=c_ +c xIndep + ...+ c xIndep_

- Linear regression finds c_ ... c¢_for you
#38

Linear Regression as

Machine Learning

e Linear regression is a supervised learning task

- You provide labeled training data, consisting of
the values of the features and the dependent
variable associated with a number of instances

e The output is a linear model

- A function that, given values for all the features,
produces a numeric value for the dependent
variable

e How is this model produced?

- Call SAS, Minitab, Matlab, R, take a Stats

course ... 430

Regression Case Study:
Bug Reports

« Software maintenance accounts for over $70
billion each year and is centered around bug
reports. Unfortunately, 26-36% of bug reports
are invalid or duplicates and must manually
triaged and removed by developers. This
takes time and money.

e If we could separate valid from invalid bug
reports, we could save time and money.

e Goal: highlight some design decisions when
using ML in practice

#40

Regression Case Study:

Bug Reports Preliminaries

e Dependent Variable: We want to know how
long (in minutes) it will take a bug report to
be resolved.

- Low quality or invalid reports that take more than
30 days to resolve (say) are an expensive use of
developer time. If we could predict this, we'd
win!

e Independent Variables:

- self-reported severity, readability, daily load,
submitter reputation, comment count,

attachment count, operating system used, ...
#41

Regression Case Study:

Bug Reports Instances

e Gather all 27,984 non-empty bug reports
between 01/01/2003 and 07/31/2005 (Firefox
1.5).

- Each report is an instance (or feature vector)

- Note the indep features (e.g., priority,
readability)

- Note the dependent feature (minutes to resolved)
e Feed to Linear Regression, get out coeffs

- Are we done?
- Let's look at some design decisions in using ML.

#42

Regression Case Study:
Input Dataset Threats

e Can | cherry-pick random bug reports?

e What if | take all reports 1 month after a beta
release’

e What is the purpose of having a larger

?
USE THE THEN
THAT =] caN you
CRS DATA= THAT Vetae = DATAIS |Z| AVERAGE SURE.T CAN

BASE TO AT
SIZE THE EJR{}IHE?

MARKET.
i

DATA- ALSO al THEM? MULTIPLY
ARSE WRONG. | ; THEM TOO.

[I\'__I,.

\

woww dilberbcom scoitedams T eol.com

H& '-.g;:&

Regression Case Study:

Independent Variables

o All features for linear regression are real-
valued (see next lecture for discrete features)

- Comment count is easy enough
- 1-bit saturating comment count
e How to encode “high/medium/low priority”?

e How to encode ° operatmg system used”7
| | &P | RemiDeresivass | & | Remaidi DeResnita
x|

#44

Regression Case Study:

Dependent Variable

 How would these be different:
- Resolved in X minutes
- Resolved in X days
- Resolved within 30 days => 1, otherwise => 0

e Linear Models give continuous output!

- If you want a binary classifier, may need to pick a
cutoff (e.g. model < 0.7 => 0, otherwise => 1)

| OM GooD, A TRUE
FALSE TEST! ___ -

RS

AT LAST, SOME CLARITY! BVERY ’
SENTENCE .5 E-‘.‘HER .JR'E,
SWE 'E" ? OR A
CoN B LE! ON’E
R wa THER | NOTHING
[N BETWEEM ! '
!

#45

Regression Case Study:

Evaluation

e You have a binary classifier for “will this
report be resolved in <= 30 days”

e You have 27,984 reports with known answers
- C = correct set of reports resolved in 30 days
- R = set of reports the model returns

e Precision
e Recall
e F-Measure

CnR
CnR

/
/

R
C

(2 x Prec x Rec) / (Prec + Rec)

#46

Regression Case Study:

Evaluation Baselines
e Say you have 100 instances

e 50 yes instances, 50 no instances, at random
- “Flip Fair Coin”: Prec=0.5, Rec=0.5, F=0.5
- “Always Guess Yes”: Prec=0.5, Rec=1.0, F=0.66
e /0 yes instances, 30 no instances, at random
- “Flip Fair Coin”: Prec=0.7, Rec=0.5, F=0.58
- “Flip Biased Coin”: Prec=0.7, Rec=0.7, F=0.7
- “Always Guess Yes”: Prec=0.7, Rec=1.0, F=0.82

e May want to subsample to 50-50 split for
evaluation purposes

#47

Regression Case Study:
Threats To Validity

e Overfitting occurs when you have learned a
model that is too complex with respect to the
data.

- 1.e., no actual abstraction has occurred
- e.g., “memorize all input instances”

e N-Fold Cross-Validation can mitigate or
detect the threat of overfitting

- Partition instances into n subsets
- Train on 2..n and test on 1
- Train on 1, 3..n and test on 2, etc.

#48

Regression Case Study:
Final Results

o Given one day's worth of features, our best F-
Measure for predicting “resolved within 30 days” was
0.76, and the industrial practice baseline was 0.73.

e F-Measure assumes false positives and false
negatives are equally bad
- For bug reports, missing a bug report is much worse than
triaging an invalid one
e IR metrics are good, but relating your results back to
the real world is key:
- “For the purposes of comparison, however, if Triage is $30

and Miss is $1000, using our model as a filter saves

between five and six percent of the development costs for
this data set.”

#49

Next Time

e How to design
features!

e Which features
mattered?

e More exotic ML
algorithms!

« How should we pick
parameters?

e Practical
information!

	Second-Order Type Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Homework

