Cooperative Bug Isolation

Ben Liblit et al.
N IKIPEDIA WIKIPEDIA

The Free Encyclopedia The Free Encyclopedia
article | discussion edit this page history pricie | | discussion @GR s page s
He-Man Editing He-Man

From Wikipedia, the free encyciopedia that anyone can edit

From Wikipedia, the free encyclopedia that anyone can ed] R
BLRDA - v —

He-Man is the most powerful man in the He-Man is actually a tremendous jackass and no

universe. Imbued with incredible madical really that powerful. He hangs out with a bunch
) 9 of jerks like Peela and Dorko, He has a cat who

power by the Sorceress of Castle Graysky | is aiso dumb and _

he defends Eternia against evildoers with

his friends Man-At-Arms, Teela, and the

lovable Orko.

L Surwvary

Categories: Eternians | Legendary Warri

Save page “Faw (et Shviw (Ny

Take Home Message

eBugs experienced by users matter.

eWe can use information from user runs of
programs to find bugs.

eRandom sampling keeps the overhead of
doing this low.

eLarge public deployments exist.

#3

Reading Quiz

Why this work is cool

e Crosscutting insights
- PL, SE, ML, Stats, ...

e Simple idea, challenging and
long-running research

4 project.
‘ - Has spawned at least 17 papers
e Real world impact
JOE - “Thanks to Ben Liblit and the
0 Cooperative Bug Isolation Project,

this version of Rhythmbox should be
bl the most stable yet.”

N

Today’s Goal: Measure Reality

We measure bridges, airplanes, cars...
Where is the right data recorder for software?

#6

Today’s Goal: Measure Reality

Users are a vast, untapped resource

«60 million XP licenses in first year; 2/second
*1.9M Kazaa downloads per week in 2004; 3/s

eUsers know what matters most
»Nay, users define what matters most!

Opportunity for reality-directed
debugging

«Implicit bug triage for an imperfect world

#H7

Good News Everyone!

eUsers can help!

e Important bugs happen often, to many users
«User communities are big and growing fast
«User runs vastly exceed testing runs
eUsers are networked pr

Fal ,.-/ ™ A

.\‘ _\ B '| .\\ \

',.It\ “.\". ﬁw\/ “
1&} /N el
C ey

i \9 \ / ./ | a8

“There are no significant
bugs in our released software
that any significant number
of users want fixed.”
-- Bill Gates in 1995

Possibility 1: Crash Reports

e In use since mid 90s

e Stack trace, memory
addresses, details about -
host configuration, ...

We have created an ermar repart that you can 2end o help us improve
Internet Explorer. ‘e will treat this report az confidential and anonymous.

o Advantage: fast + €aSY . .cumen ot s

o L'im'itat'ion5: Send Ener Report | [Bant Sen

- Crashes don’t always occur
“near” the defect

- Hard to tell which crashes
correspond to the same bug

Internet Explorer |

You choze to end the nonresponsive program. Internet
Explorer.

Possibility 2:
Instrument all the things

e Advantage:
- You have everything you could hope to have for

bug triage

e Limitation:

- Way to slow for deployed code

« Heavyweight instrumentation like this implies ~1000x
slowdown

The best of both worlds

e Lots of information: something close to what
a debugger could tell us

o Ability to compare failed runs to good runs
« No compromise on performance for users

Solution: Randomness

Similar to statistical profiling
« AMD CodeAnalyst, Shark, gprof, Intel VTune

ldea: eac
Generic s

«Adaptation of Arnold & Ryder

n user records 0.1% of everything

parse sampling framework

#13

Bug Isolation Architecture

No annotation required;
just pick what to
instrument.
< b
—> | Sampler

Z
- _—
Compiler

R |'
Top bugs with | Wf Profile
likely causes7 Debugging | & OB

~

#14

Potential Concerns

Flipping a random coin isn’t cheap

Many kind of things we might like to record

- Function return values, Control flow decisions, Minima &
maxima, Value relationships, Pointer regions, Reference
counts, Temporal relationships

Aggregated data may be huge

— Client-side reduction/summarization

Will never have complete information
— Make wild guesses about bad behavior
— Look for broad trends across many runs

Sampling

|ldentify the points of interest

Decide to examine or ignore each site...

eRandomly
eIndependently

Energy per unit volume before = Energy per unit volume after

«Dynamically R+ 2PV + pghy = Py +5pvy + pgh,
Pressure| |Kinetic Patential
Ene Ener Ener
oy per u?'ﬁt per u?-hrt The often cited example of the
volume volume Barnoulli Equation or "Bernoulli
- Effect" is the reduction in pressure
Flow velocity Flow velocity) which ocours when the fluid speed
vy Vs increases.

E,.__h:__-_ﬂr—__’._
"fg =V 1
A F;E = P1 .
P Increased fluid speed, '
1 decreased internal pressure.

#16

Sampling Blocks

Consider the following piece of code

check(p != NULL);
P = p->next;
check(i < max);
total += sizes[i];

We want to sample 1/100t" of these checks

17

Sampling Blocks

Solution 1 : Maintain a global counter modulo 100

Problem?

for(i=0 ;1< n; i++)
{
check(p !'= NULL);
P = p->nhext;
check(i < max);
total += sizes[i];

}

18

Sampling Blocks

Solution 1 : Maintain a global counter modulo 100

Problem?

{ recorded 1/50

check(p != NULL); times, the other
not at all.

P = p->next;
check(i < max);
total += sizes[i];

}

19

Sampling Blocks

Solution 2: Use a random number generator
{
if(rand(100) =
P = p->next;
if(rand(100) == 0) check (i < max);
total += sizes|i];

}

Problem?

O)check (p !'= NULL);

20

Sampling Blocks

Solution 2: Use a random number generator
{
if(rand(100) =
P = p->next;
if(rand(100) == 0) check (i < max);
total += sizes[i];

O)check (p !'= NULL);

3 Calltorand is
Problem? more expensive
than the checks!

21

Solution: Bernoulli

eRandomized global countdown

«Selected from geometric distribution

«Simulates many tosses of a biased coin

eStores: How many tails before next head?

-i.e., how many sampling points to skip before we write down the next
piece of data?

eMean of distribution = expected sample rate

Solution: Bernoulli

Requires two versions of code:
- Slow path:
e Code with the sampled instrumentation

- Fast path:
e Code w/o the sampled instrumentation

23

Sampling Blocks

Fast Path Code Slow Path Code
if (countdown > 2) {
D = p->next; if(countdown-- ==0) {
. . check(p '= NULL);
total += sizes[i]; countdown = getNextCountdown();
3)
p = p->nhext;
if(countdown-- ==0){

check(i < max);
countdown = getNextCountdown();

}

total += sizes[i];

24

Sampling Functions

Represent sampling blocks as a CFG

Weight of path is the maximum number of
instrumentation sites

Place a countdown threshold check on each acyclic
region
For each region r:
If (next-sample countdown >weight)
no samples taken

25

Amortized Coin Tossing

eEach acyclic region:

eFinite number of paths

eFinite max number of
instrumentation sites

«Shaded nodes represent
instrumentation sites

#26

Amortized Coin Tossing

eEach acyclic region:

eFinite number of paths

eFinite max number of
instrumentation sites

«Clone each region

«“Fast” variant
« “Slow” sampling variant

«Choose at run time

H27

Optimizations

«Cache global countdown in local variable

«Global = local at func entry & after each call
eLocal - global at func exit & before each call

eldentify and ignore “weightless” functions

«Avoid cloning

eInstrumentation-free prefix or suffix
«Weightless or singleton regions

«Static branch prediction at region heads
ePartition sites among several binaries
eMany additional possibilities ...

#28

Colleges and Universities

This New York University is
named for the family whose
company was the first to
sell toothpaste in a tube

Sharing the Cost of Assertions

Now we know how to sample things.

Does this work in practice?
eLet’s do a series of experiments.

First: microbenchmark for sampling costs!
What to sample: assert () statements

|ldentify (for debugging) assertions that
«Sometimes fail on bad runs
eBut always succeed on good runs

#30

Case Study: CCured Safety Checks

Assertion-dense C code

Worst-case scenario for us
eEach assertion extremely fast

No bugs here; purely performance study

eUnconditional: 55% average overhead
/.00 SAamMpling: 17% average overhead
1/ 000 S@Mpling: 10% average; half below 5%

#31

Effectiveness of Sampling

e At density 1/1000 for observing rare program
behavior?

- To achieve confidence level =90%,
- Least number of runs needed = 230,258 !
- Solution: No. of licensed Office XP users = 16 million

2 runs/week/user = 230258 runs every 19 min!

32

Isolating a Deterministic Bug

eGuess predicates on scalar function returns
(£() < 0) (£() == 0) (£() > 0)

«Count how often each predicate holds
«Client-side reduction into counter triples

eldentify differences in good versus bad runs

ePredicates observed true on some bad runs
ePredicates never observed true on any good run

Function return
triples aren’t the
only things we can
sample.

#33

Case Study: cecrypt Crashing Bug

e 570 call sites
e 3 X 570 =1710 counters
Simulate large user community

«2990 randomized runs; 88 crashes
Sampling density /.49,
eLess than 4% performance overhead

Recall goal: sampled predicates should make it
easier to debug the code ...

#34

Winnowing Down to the Culprits

1710 counters
«1569 are always zero
-141 remain

139 are nonzero on
some successful run

eNot much left!
file exists() > O

xreadline () ==
>

Number of"good" features left

How do these pin
down the bug? You’ll
see in a second.

140F

120

100

[o:]
o

[=2]
o

N
o

5
5

e

g
%ﬂ@ﬂﬁ%ﬁk

0 500

1000 1500 2000
Number of successful trials used

2500

3000

#35

Isolating a Non-Deterministic Bug

eGuess: at each direct scalar assignment

X = ..
eFor each same-typed in-scope variable y
eGuess predicates on x and y

(x < y) (x == y) (x > vy)
«Count how often each predicate holds
-Client-side reduction into counter triples

#36

Case Study: be Crashing Bug

Hunt for intermittent crash in be-1.06
eStack traces suggest heap corruption

¢2729 runs with 9MB random inputs
« 30,150 predicates on 8910 lines of code

«Sampling key to performance
«13% overhead without sampling
«0.5% overhead with /.44, sampling

Statistical Debugging via Regularized
Logistic Regression

failure=1 —

success=0 —

count

«S-shaped cousin to linear regression
ePredict success/failure as function of counters

ePenalty factor forces most coefficients to zero
eLarge coefficient = highly predictive of failure

#38

Top-Ranked Predictors

void more arrays () #1: indx > scale
{
#2: indx > use math

/* Copy the old arrays. */
for (indx = 1; indx < old count; indx++)
arrays[indx] = old ary[indx];

/* Initialize the new elements. */

for (; indx < v_count; indx++)
arrays[indx] = NULL;

#39

Top-Ranked Predictors

‘{’°ld more_arrays () #1: indx > scale
#2: indx > use math
, y #3. indx > opterr
* Copy the old arrays. * .
for (indx = 1; indx < old count; 74 1ndx > next func
arrays[indx] = old aryl[indx]; #5: indx > 1 base

/* Initialize the new elements. */
for (; indx < v_count; indx++)
arrays[indx] = NULL;

#40

Bug Found: Buffer Overrun

void more arrays ()

{

/* Copy the old arrays. */
for (indx = 1; indx < old count; indx++)
arrays[indx] = old ary[indx];

/* Initialize the new elements. */

for (; indx < v_count; indx++)
arrays[indx] = NULL;

H#A41

It Works!

...for programs with just one bug.

e Need to deal with multiple bugs
- How many? Nobody knows!

e Redundant predictors remain a major problem

Goal: isolate a single “best”
predictor for each bug, with no prior
knowledge of the number of bugs.

Multiple Bugs: Some Issues

e A bug may have many redundant predictors
- Only need one, provided it is a good one

e Bugs occur on vastly different scales

- Predictors for common bugs may dominate, hiding
predictors of less common problems

Ranked Predicate Selection

e Consider each predicate P one at a time
- Include inferred predicates (e.g. <, #, >)

e How likely is failure when P is true?
- (technically, when P is observed to be true)

e Multiple bugs yield multiple bad predicates

Some Definitions

F(P)= #failingruns with|P|> 0

S(P) = #successfulruns with |[P|> 0
__ F(P)
S(P)+ F(P)

0
A
J

|

Are We Done? Not Exactly!

if (f == NULL) {
X = 0;
}

Bad(f = NULL) =1.0

«Are We Done? Not Exactly!

if (f == NULL) {

X = 0;
. Bad(x =) =1.0
*-F,

Bad(f = NULL) =1.0

e Predicate (x =) is innocent bystander
- Program is already doomed

Fun With Multi-Valued Logic

o Identify unlucky sites on the doomed path

F(P v —P)
S(Pv —P)+ F(Pv —P)

Context (P) =

e Background risk of failure for reaching this
site, regardless of predicate truth/falsehood

Isolate the Predictive Value of P

Does P being true increase the chance of failure
over the background rate?

Increase(P) = Bad (P) — Context (P)

e Formal correspondence to likelihood ratio
testing

Increase Isolates the Predictor

if (f == NULL) {

X = 0;
Increase(x = 0) =0.0
Xk o
3

Increase(f = NULL) =1.0

Guide to Visualization

e Multiple interesting & useful predicate
metrics

o Simple visualization may help reveal trends

Increase(P)

Context(P) S(P)

Y

log(F(P) + S(P))

Bad Idea #1: Rank by F(P)

Thermometer | Context Increase S | F F+S Predicate

[I 0.176 0.007 £0.012 22554 | 5045 27599 files[filesindex] .language != 15

[I 0.176 0.007+0.012 22566 | 5045 27611 tmp == 0 1s FALSE

[I 0.176 0.007 £0.012 22571 5045 27616 strcmp != 0

] 0.176 0.007+0.013 18894 | 4251 23145 tmp == 0 is FALSE

] 0.176 0.007+0.013 18885 | 4240 23125 files[filesindex] .language != 14

[I 0.176 0.0084+0.013 17757 | 4007 21764 filesindex >= 25

| I 0.177 0.008+0.014 16453 3731 20184 new value of M < o0ld value of M

B 0.176 0.261 £0.023 4800 | 3716 8516 config.winnowing window size != argc

2732 additional predictors follow

e Many failing runs but low /ncrease

e Tend to be super-bug predictors
- Each covers several bugs, plus lots of junk

Bad Idea #2: Rank by Increase(P)

Thermometer | Context Increase S | F F+S Predicate

[0.065 0935+£0019 0 | 23 23 ((*(fi1i + 1i)))->this.last token < filesbase
| 0.065 0935£0020 0 | 10 10 ((*(£1 + 1i)))-»other.last line == last

[0.071 0.9294+0.020 0 | I8 18 ((*(fi + 1)))->other.last line == filesbase
(] 0.073 0927+0.020 0 | 10 10 ((*(£1 + 1i)))->other.last line == yy n chars
(| 0.071 0929+0028 0 | 19 19 bytes <= filesbase

| 0.075 0.925+0.022 0 | 14 14 ((*(fi + 1i)))->other.first line ==

[0.076 0924+£0.022 0 | 12 12 ((*(fi + 1)))->this.first_line < nid

[0.077 0923+£0.023 0 | 10 10 ((*(f1 + i)))->other.last line == yy init

.. 2732 additional predictors follow

e High Increase but very few failing runs

e These are all sub-bug predictors
- Each covers one special case of a larger bug

e Redundancy is clearly a problem

A Helpful Analogy

 In the language of information retrieval
- Increase(P) has high precision, low recall
- F(P) has high recall, low precision

e Standard solution:
- Take the harmonic mean of both (F-Measure)
- Rewards high scores in both dimensions

Rank by Harmonic Mean

Thermometer | Context Increase S | F F+S Predicate

I 0.176 0.8244+0.009 0 | 1585 1585 files[filesindex] .language > 16

[0.176 0.824+0.009 0 | 1584 1584 strcmp > O

[0.176 0.824+0.009 0 1580 1580 strcmp ==

I 0.176 0.824+0.009 0 | 1577 1577 files[filesindex] .language == 17

[0.176 0.824+0.009 0 | 1576 1576 tmp == 0 is TRUE

[0.176 0.8244+0.009 0 1573 1573 strcmp > O

[0.116 0.8834+0.012 | 774 775 ((*(£1 + 1)))->this.last line == 1
[0.116 0.883+0.012 1 776 777 ((*(fi + 1)))->other.last line == yyleng

... 2732 additional predictors follow,

e Definite improvement
- Large increase, many failures, few or no successes

e But redundancy is still a problem

Redundancy Elimination

e One predictor for a bug is interesting
- Additional predictors are a distraction
- Want to explain each failure once
e Similar to minimum set-cover problem
- Cover all failed runs with subset of predicates
- Greedy selection using harmonic ranking

Moving To The Real World

ePick instrumentation scheme
e Automatic tool instruments program
«Sampling yields low overhead
eMany users run program
eMany reports) find bug
S0 let’s do it!

e -

Native Compiler Integration

eInstrumentor must mimic native compiler
-You don’t have time to port & annotate by hand

e This approach: source-to-source, then native
eHooks for GCC.:

Guesses
- L

Sampler
B = G

#58

Keeping the User In Control

| Bug Isolation Preferences X

Automatic Reporting

ESend application feedback:

-
-~
ici i i i - ‘
Participating Applications -
. . e
Application = |Enabled
Evalution -
Gaim - Automatic Reperting
-

#& Preferences

45 About

Help X Close

About Bug Isolation Monitor

Bug Isolation Monitor 0.7.4

View and set bug isolation preferences

Copyright © 2003-2004 The Regents of the University of California

The Cooperative Bug Isolation Project

Some applications on this computer can monitor their own
behavior while they run. Each time you use a participating
application, you can help to make it better for everyone.

Feedback from users like you can help us find and fix the bugs
that matter most. Do you wish to provide automatic feedback
when you use participating applications on this computer?

Yes, count me in

If you choose "Yes," then participating applications will send
feedbackto the bug isolation center after each run. Failed runs
will also include crash reports to help us see what went wrong.

@ No thank you:

If you choose "Mo,” then participating applications will not
manitartheir own behavior. Mo automatic feedback will ever be
sent, though you can still report problems manually.

Mot sure what to do? Click here to learn more.

Credits

#590

Public Deployment 2004

m Good
O Error
B Crash

#60

Public Deployment 2004

100%
802%
60% H Good
[Error
40% M Crash
20%
0%

#61

Sneak Peak: Data Exploration

Eile Edit \ew Favorites Tools Help

] C:\Documents and Settings\Ben Liblit\Desktop\Rhythmbox results\MR_Ib. html - Microsoft Internet Explorer (=
'1]'

Scheme: [branch] [return] [scalar] [all]

Sorted by: [lower bound of confidence interval] [increase score] [fai score] [true in # F muns]

Go to: [report summarv] [CBI webpage]

predicate function file line
I monkev media plaver get uri= () info_available cb rb-shell-plaver.c:1774
I monkev media plaver get uri= () info_available cb rb-shell-plaver.c:17635
— th_entrv view get entrv contained=0 rb shell jump to entrv with source rb-shellc:2118
I ¢ source remove > () cddb_disclosure destrov disclosure-widget.c.77
— thvthmdb tree entrv insert =10 thvthmdb tree parser end element thvthmdb-tree c:460
I— g hash table lookup = 0 thvthmdb tree_entrv_insert thvthmdb-tree c:838
— thvthmdb querv model entrv to iter = 0 rb_entrv view get entrv contained rb-entrv-view.c:1902
E— g hash table lookup =0 thvthmdb querv_model entrv to_iter thvthimdb-querv-model c:870
E— remove child =0 remove entrv from album thvthmdb-tree.c:1030
— eel gconf handle error =10 eel gconf get boolean eel-gconf-extensions.c:107
:EI :J My Computer

#62

Summary: Putting it All Together

«Flexible, fair, low overhead sampling

ePredicates probe program behavior

«Client-side reduction to counters
eMost guesses are uninteresting or meaningless

«Seek behaviors that co-vary with outcome

eDeterministic failures: process of elimination
eNon-deterministic failures: statistical modeling

#63

Conclusions
eBug triage that directly reflects reality

eLearn the most, most quickly, about the bugs that happen
most often

«Variability is a benefit rather than a problem
eResults grow stronger over time

«Find bugs while you sleep!

«Public deployment is challenging

eReal world code pushes tools to their limits
eLarge user communities take time to build

#64

eProjects!

IF I HAD A COMPUTER,
I'M SURE 1D GET

BETTER GRADES ON
M{ BOOK REFORTS.

Homework

YOU'D STILL HAVE TO READ THE
BOOK AMD TELL :

THE COMPUTER
WHAT MOU WANT

MEn, WHAT'S AL THE
FUSS ABOUT COMPUTERS 7/

