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Take Home Message 

•Bugs experienced by users matter. 

 

•We can use information from user runs of 

programs to find bugs. 

 

•Random sampling keeps the overhead of 

doing this low. 

 

•Large public deployments exist. 



Reading Quiz 



Why this work is cool 

• Crosscutting insights 

– PL, SE, ML, Stats, … 

• Simple idea, challenging and 

long-running research 

project. 

– Has spawned at least 17 papers 

• Real world impact 
– “Thanks to Ben Liblit and the 

Cooperative Bug Isolation Project, 

this version of Rhythmbox should be 

the most stable yet.” 
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Today’s Goal: Measure Reality 

We measure bridges, airplanes, cars… 
•Where is the right data recorder for software? 
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Today’s Goal: Measure Reality 

Users are a vast, untapped resource 
•60 million XP licenses in first year; 2/second  

•1.9M Kazaa downloads per week in 2004; 3/s 

•Users know what matters most 

»Nay, users define what matters most! 

Opportunity for reality-directed 

debugging 
•Implicit bug triage for an imperfect world 



#8 

Good News Everyone! 

•Users can help! 

•Important bugs happen often, to many users 
•User communities are big and growing fast 

•User runs vastly exceed testing runs 

•Users are networked 



“There are no significant 
bugs in our released software 
that any significant number 
of users want fixed.” 
                              -- Bill Gates in 1995 



Possibility 1: Crash Reports 

• In use since mid 90s 

• Stack trace, memory 

addresses, details about 

host configuration, … 

• Advantage: fast + easy 

• Limitations: 

– Crashes don’t always occur 

“near” the defect 

– Hard to tell which crashes 

correspond to the same bug 

 



Possibility 2:  

Instrument all the things 
 

• Advantage:  

– You have everything you could hope to have for 

bug triage 

• Limitation: 

– Way to slow for deployed code 

• Heavyweight instrumentation like this implies ~1000x 

slowdown 

 



The best of both worlds 

• Lots of information: something close to what 

a debugger could tell us 

• Ability to compare failed runs to good runs 

• No compromise on performance for users 
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Solution: Randomness 

Similar to statistical profiling 

•  AMD CodeAnalyst, Shark, gprof, Intel VTune  

Idea: each user records 0.1% of everything 

Generic sparse sampling framework 
•Adaptation of Arnold & Ryder 
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Bug Isolation Architecture 

Program 

Source 

Compiler 

Sampler 

Guesses 

Shipping 

Application 

Profile 

& / 

  
Statistical 

Debugging 

Top bugs with 

likely causes 

No annotation required; 
just pick what to 

instrument. 



Potential Concerns 

• Flipping a random coin isn’t cheap 

• Many kind of things we might like to record 

– Function return values, Control flow decisions, Minima & 

maxima, Value relationships, Pointer regions, Reference 

counts, Temporal relationships 

• Aggregated data may be huge 

 Client-side reduction/summarization 

• Will never have complete information 

 Make wild guesses about bad behavior 

 Look for broad trends across many runs 
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Sampling 

Identify the points of interest 

Decide to examine or ignore each site… 
•Randomly 

•Independently 

•Dynamically 
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Sampling Blocks 

Consider the following piece of code 

 

 check(p != NULL); 

 p = p->next; 

 check(i < max); 

 total += sizes[i]; 

 

We want to sample 1/100th of these checks 
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Sampling Blocks 

Solution 1 : Maintain a global counter modulo 100  

 

Problem? 

 

   for(i = 0 ; i < n; i++) 

     {   

      check(p != NULL); 

       p = p->next; 

       check(i < max); 

       total += sizes[i]; 

      } 
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Sampling Blocks 

Solution 1 : Maintain a global counter modulo 100  

 

Problem? 

 

   for(i = 0 ; i < n; i++) 

     {   

      check(p != NULL); 

       p = p->next; 

       check(i < max); 

       total += sizes[i]; 

      } 

One check will be 
recorded 1/50 

times, the other 
not at all. 
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Sampling Blocks 

Solution 2: Use a random number generator 

{ 

   if(rand(100) == 0)check (p != NULL); 

   p = p->next; 

   if(rand(100) == 0) check (i < max); 

   total += sizes[i]; 

} 

Problem? 
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Sampling Blocks 

Solution 2: Use a random number generator 

{ 

   if(rand(100) == 0)check (p != NULL); 

   p = p->next; 

   if(rand(100) == 0) check (i < max); 

   total += sizes[i]; 

} 

Problem? 

  

Call to rand is 
more expensive 
than the checks! 



Solution: Bernoulli 

•Randomized global countdown 

•Selected from geometric distribution 
•Simulates many tosses of a biased coin 

•Stores: How many tails before next head? 

–i.e., how many sampling points to skip before we write down the next 

piece of data? 

•Mean of distribution = expected sample rate 
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Solution: Bernoulli 

Requires two versions of code: 

– Slow path: 

•Code with the sampled instrumentation 

 

– Fast path:  

•Code w/o the sampled instrumentation 
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Sampling Blocks 

Fast Path Code                       Slow Path Code 

 

if (countdown > 2) { 

 p = p->next; 

 total += sizes[i]; 

 } 

 

if( countdown-- == 0 ) { 
check(p != NULL); 
countdown = getNextCountdown(); 
} 
p = p->next; 
if( countdown-- == 0 ) { 
check( i < max ); 
countdown = getNextCountdown(); 
} 
total += sizes[i]; 
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Sampling Functions 

• Represent sampling blocks as a CFG 

• Weight of path is the maximum number of 
instrumentation sites  

• Place a countdown threshold check on each acyclic 
region  

• For each region r: 

If (next-sample countdown >weight) 

   no samples taken 
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Amortized Coin Tossing 

•Each acyclic region: 
•Finite number of paths 

•Finite max number of 

instrumentation sites 

•Shaded nodes represent 

instrumentation sites 

1 

2 1 

1 

1 

2 

3 

4 
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Amortized Coin Tossing 

•Each acyclic region: 
•Finite number of paths 

•Finite max number of 

instrumentation sites 

•Clone each region 
•“Fast” variant 

•“Slow” sampling variant 

•Choose at run time 

>4? 
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Optimizations 

•Cache global countdown in local variable 
•Global  local at func entry & after each call 

•Local  global at func exit & before each call 

•Identify and ignore “weightless” functions 

•Avoid cloning 
•Instrumentation-free prefix or suffix 

•Weightless or singleton regions 

•Static branch prediction at region heads 

•Partition sites among several binaries 

•Many additional possibilities … 



Colleges and Universities 

This New York University is 

named for the family whose 

company was the first to 

sell toothpaste in a tube 
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Sharing the Cost of Assertions 

Now we know how to sample things. 

Does this work in practice? 
•Let’s do a series of experiments. 

 

First: microbenchmark for sampling costs! 

•What to sample: assert() statements 

•Identify (for debugging) assertions that 
•Sometimes fail on bad runs 

•But always succeed on good runs 
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Case Study: CCured Safety Checks 

Assertion-dense C code 

Worst-case scenario for us 
•Each assertion extremely fast 

No bugs here; purely performance study 
•Unconditional:  55% average overhead 

•1/100 sampling:  17% average overhead 

•1/1000 sampling:  10% average; half below 5% 
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Effectiveness of Sampling  

• At density 1/1000 for observing rare program 
behavior? 

– To achieve confidence level =90%, 

– Least number of runs needed = 230,258 !  

– Solution: No. of licensed Office XP users = 16 million 

 

 2 runs/week/user = 230258 runs every 19 min!  
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Isolating a Deterministic Bug 

•Guess predicates on scalar function returns 
 (f() < 0)    (f() == 0)    (f() > 0) 

•Count how often each predicate holds 
•Client-side reduction into counter triples 

•Identify differences in good versus bad runs 
•Predicates observed true on some bad runs 

•Predicates never observed true on any good run 

Function return 
triples aren’t the 

only things we can 
sample. 
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Case Study: ccrypt Crashing Bug 

• 570 call sites 

• 3 × 570 = 1710 counters 

Simulate large user community 
•2990 randomized runs; 88 crashes 

Sampling density 1/1000 

•Less than 4% performance overhead 

Recall goal: sampled predicates should make it 

easier to debug the code … 
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Winnowing Down to the Culprits 

•1710 counters 

•1569 are always zero 

–141 remain 

•139 are nonzero on 

some successful run 

•Not much left! 

file_exists() > 0 

xreadline() == 0 

How do these pin 
down the bug? You’ll 

see in a second. 
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Isolating a Non-Deterministic Bug 

•Guess: at each direct scalar assignment 

 x = … 

•For each same-typed in-scope variable y 

•Guess predicates on x and y 

 (x < y)    (x == y)    (x > y) 

•Count how often each predicate holds 

–Client-side reduction into counter triples 
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Case Study: bc Crashing Bug 

Hunt for intermittent crash in bc-1.06 

•Stack traces suggest heap corruption 

•2729 runs with 9MB random inputs 

•30,150 predicates on 8910 lines of code 

•Sampling key to performance 
•13% overhead without sampling 

•0.5% overhead with 1/1000 sampling 
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Statistical Debugging via Regularized 

Logistic Regression 

•S-shaped cousin to linear regression 

•Predict success/failure as function of counters 

•Penalty factor forces most coefficients to zero 
•Large coefficient  highly predictive of failure 

count 

failure = 1 

success = 0 
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Top-Ranked Predictors 

void more_arrays () 

{ 

  … 

 

  /* Copy the old arrays. */ 

  for (indx = 1; indx < old_count; indx++) 

    arrays[indx] = old_ary[indx]; 

 

  /* Initialize the new elements. */ 

  for (; indx < v_count; indx++) 

    arrays[indx] = NULL; 

 

  … 

} 

#1: indx > scale #1: indx > scale 

#2: indx > use_math 
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Top-Ranked Predictors 

void more_arrays () 

{ 

  … 

 

  /* Copy the old arrays. */ 

  for (indx = 1; indx < old_count; indx++) 

    arrays[indx] = old_ary[indx]; 

 

  /* Initialize the new elements. */ 

  for (; indx < v_count; indx++) 

    arrays[indx] = NULL; 

 

  … 

} 

#1: indx > scale #1: indx > scale 

#2: indx > use_math 

#1: indx > scale 

#2: indx > use_math 

#3: indx > opterr 

#4: indx > next_func 

#5: indx > i_base 
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Bug Found: Buffer Overrun 

void more_arrays () 

{ 

  … 

 

  /* Copy the old arrays. */ 

  for (indx = 1; indx < old_count; indx++) 

    arrays[indx] = old_ary[indx]; 

 

  /* Initialize the new elements. */ 

  for (; indx < v_count; indx++) 

    arrays[indx] = NULL; 

 

  … 

} 



It Works! 

…for programs with just one bug. 

• Need to deal with multiple bugs 
– How many? Nobody knows! 

• Redundant predictors remain a major problem 

Goal: isolate a single “best” 

predictor for each bug, with no prior 

knowledge of the number of bugs. 



Multiple Bugs: Some Issues 

• A bug may have many redundant predictors 

– Only need one, provided it is a good one 

• Bugs occur on vastly different scales 

– Predictors for common bugs may dominate, hiding 

predictors of less common problems 



Ranked Predicate Selection 

• Consider each predicate P one at a time 

– Include inferred predicates (e.g. ≤, ≠, ≥) 

• How likely is failure when P is true? 

– (technically, when P is observed to be true) 

• Multiple bugs yield multiple bad predicates 



Some Definitions 
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Are We Done? Not Exactly! 

if (f == NULL) { 
 x = 0; 
 *f; 
} 

Bad(f = NULL) = 1.0 



•Are We Done? Not Exactly! 

if (f == NULL) { 
 x = 0; 
 *f; 
} 

• Predicate (x = 0) is innocent bystander 

– Program is already doomed 

Bad(f = NULL) = 1.0 

Bad(x = 0) = 1.0 



Fun With Multi-Valued Logic 

• Identify unlucky sites on the doomed path 

• Background risk of failure for reaching this 

site, regardless of predicate truth/falsehood 

)()(
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Isolate the Predictive Value of P 

Does P being true increase the chance of failure 

over the background rate? 

• Formal correspondence to likelihood ratio 

testing 

 

)()()( PContextPBadPIncrease 



Increase Isolates the Predictor 

if (f == NULL) { 
 x = 0; 
 *f; 
} 

 

Increase(f = NULL) = 1.0 

Increase(x = 0) = 0.0 



Guide to Visualization 

• Multiple interesting & useful predicate 

metrics 

• Simple visualization may help reveal trends 

Increase(P) 

S(P) 

log(F(P) + S(P)) 

Context(P) 



Bad Idea #1: Rank by F(P) 

• Many failing runs but low Increase 

• Tend to be super-bug predictors 

– Each covers several bugs, plus lots of junk 



Bad Idea #2: Rank by Increase(P) 

• High Increase but very few failing runs 

• These are all sub-bug predictors 

– Each covers one special case of a larger bug 

• Redundancy is clearly a problem 



A Helpful Analogy 

• In the language of information retrieval 

– Increase(P) has high precision, low recall 

– F(P) has high recall, low precision 

• Standard solution: 

– Take the harmonic mean of both (F-Measure) 

– Rewards high scores in both dimensions 



Rank by Harmonic Mean 

• Definite improvement 

– Large increase, many failures, few or no successes 

• But redundancy is still a problem 



Redundancy Elimination 

• One predictor for a bug is interesting 

– Additional predictors are a distraction 

– Want to explain each failure once 

• Similar to minimum set-cover problem 

– Cover all failed runs with subset of predicates 

– Greedy selection using harmonic ranking 
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Moving To The Real World 

•Pick instrumentation scheme 

•Automatic tool instruments program 

•Sampling yields low overhead 

•Many users run program 

•Many reports ) find bug 

•So let’s do it! 
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Native Compiler Integration 

•Instrumentor must mimic native compiler 

–You don’t have time to port & annotate by hand 

•This approach: source-to-source, then native 

•Hooks for GCC: 

Program 

Source Compiler 

Sampler 

Guesses 

Shipping 

Application 
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Keeping the User In Control 
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Public Deployment 2004 
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Public Deployment 2004 
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Sneak Peak: Data Exploration 
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Summary: Putting it All Together 

•Flexible, fair, low overhead sampling 

•Predicates probe program behavior 
•Client-side reduction to counters 

•Most guesses are uninteresting or meaningless 

•Seek behaviors that co-vary with outcome 
•Deterministic failures: process of elimination 

•Non-deterministic failures: statistical modeling 
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Conclusions 

•Bug triage that directly reflects reality 
•Learn the most, most quickly, about the bugs that happen 
most often 

•Variability is a benefit rather than a problem 
•Results grow stronger over time 

•Find bugs while you sleep! 

•Public deployment is challenging 
•Real world code pushes tools to their limits 

•Large user communities take time to build 
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Homework 

•Projects! 


