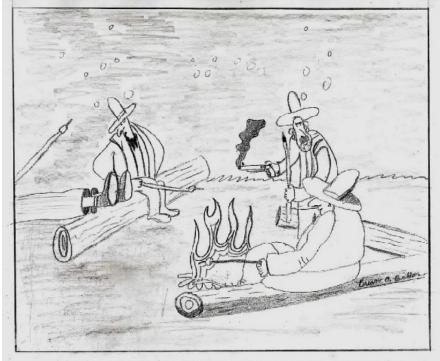
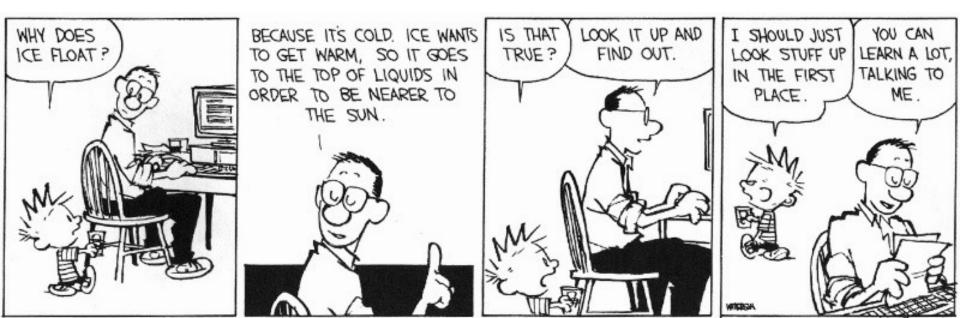
Simply-Typed Lambda Calculus



You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!

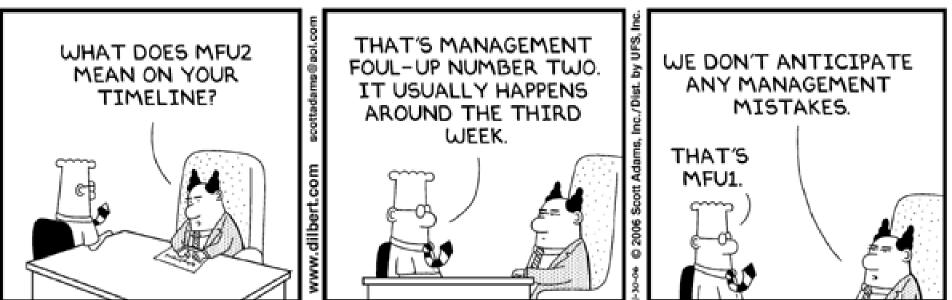
Back to School

- What is operational semantics? When would you use contextual (small-step) semantics?
- What is denotational semantics?
- What is axiomatic semantics? What is a verification condition?



Today's (Short?) Cunning Plan

- Type System Overview
- First-Order Type Systems
- Typing Rules
- Typing Derivations
- Type Safety



Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a type of the variable
 - A variable of type "bool" is supposed to assume only boolean values
 - If x has type "bool" then the boolean expression "not(x)" has a sensible meaning during every run of the program

Typed and Untyped Languages

<u>Untyped languages</u>

- Do *not* restrict the range of values for a given variable
- Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
- The pure λ -calculus is an extreme case of an untyped language (however, its behavior is completely specified)

• <u>(Statically) Typed languages</u>

- Variables are assigned (non-trivial) types
- A type system keeps track of types
- Types might or might not appear in the program itself
- Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost <u>purpose of types</u> is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment

Execution Errors

- A program is deemed <u>safe</u> if it does *not* cause untrapped errors
 - Languages in which all programs are safe are <u>safe languages</u>
- For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 - e.g., null pointer dereference
- Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI '05)
 - prevent insecure information flow (e.g., Li POPL '05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)

Preventing Forbidden Errors -Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, *before testing*
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is undecidable in most languages

Preventing Forbidden Errors -Dynamic Checking

- Required when static checking is undecidable
 - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g. Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g. null-pointer)

Why Typed Languages?

- Development
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
- Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction
- Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Why Not Typed Languages?

- Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g. OO programming in a non-OO language, but cf. Ruby, OCaml, etc.)
- Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic \Rightarrow need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)

Safe Languages

- There are typed languages that are not safe (<u>"weakly typed languages</u>")
- All safe languages use types (static or dynamic)

	Typed		Untyped
	Static	Dynamic	
Safe	ML, Java, Ada, C#, Haskell,	Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python,	λ-calculus
Unsafe	C, C++, Pascal,	?	Assembly

We focus on statically typed languages

Properties of Type Systems

- How do types differ from other program annotations?
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications
- Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be <u>transparent</u>
 - Should be easy to see why a program is not well-typed

Why Formal Type Systems?

- Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
- A fair amount of careful analysis is required to avoid false claims of type safety
- A formal presentation of a type system is a precise specification of the type checker

- And allows formal proofs of type safety

 But even informal knowledge of the principles of type systems help

Formalizing a Language

- 1. Syntax
 - Of expressions (programs)
 - Of types
 - Issues of binding and scoping
- 2. Static semantics (typing rules)
 - Define the typing judgment and its derivation rules
- 3. Dynamic Semantics (e.g., operational)
 - Define the evaluation judgment and its derivation rules
- 4. Type soundness
 - Relates the static and dynamic semantics
 - State and prove the <u>soundness theorem</u>

Typing Judgments

- <u>Judgment</u> (recall)
 - A statement J about certain formal entities
 - Has a truth value \vDash J
 - Has a derivation \vdash J (= "a proof")
- A common form of <u>typing judgment</u>:

 $\Gamma \vdash e : \tau$ (e is an expression and τ is a type)

- Γ (Gamma) is a set of type assignments for the free variables of e
 - Defined by the grammar $\Gamma ::= \cdot | \Gamma, x : \tau$
 - Type assignments for variables not free in e are not relevant
 - e.g, $x: int, y: int \vdash x + y: int$

Typing rules

- <u>Typing rules</u> are used to derive typing judgments
- Examples:

$$\overline{\Gamma} \vdash 1 : int

 \frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau}$$

$$\overline{\Gamma} \vdash e_1 : int \quad \Gamma \vdash e_2 : int

 \overline{\Gamma} \vdash e_1 + e_2 : int$$

Typing Derivations

- A <u>typing derivation</u> is a derivation of a typing judgment (big surprise there ...)
- Example:

 $\underbrace{\frac{x: \texttt{int} \vdash x: \texttt{int}}{x: \texttt{int} \vdash x: \texttt{int}}}_{x: \texttt{int} \vdash x: \texttt{int}} \underbrace{\frac{x: \texttt{int} \vdash x: \texttt{int}}{x: \texttt{int} \vdash x + \texttt{1}: \texttt{int}}}_{x: \texttt{int} \vdash x + \texttt{1}: \texttt{int}}$

 $x: int \vdash x + (x + 1): int$

- We say Γ⊢ e : τ to mean there exists a derivation of this typing judgment (= "we can prove it")
- Type checking: given Γ , e and τ find a derivation
- Type inference: given Γ and e, find τ and a derivation

Proving Type Soundness

- A typing judgment is either true or false
- Define what it means for a value to have a type $\mathbf{v} \in \| \mathbf{\tau} \|$

(e.g. $5 \in \|$ int $\|$ and true $\in \|$ bool $\|$)

 Define what it means for an <u>expression</u> to have a type

 $e \in |\tau|$ iff $\forall v. (e \Downarrow v \Rightarrow v \in ||\tau||)$

Prove type soundness

If $\cdot \vdash e : \tau$ then $e \in |\tau|$

or equivalently

If $\cdot \vdash e : \tau$ and $e \Downarrow v$ then $v \in ||\tau||$

- This implies safe execution (since the result of a unsafe execution is not in $\| \tau \|$ for any τ)

Upcoming Exciting Episodes

- We will give formal description of first-order type systems (no type variables)
 - Function types (simply typed λ -calculus)
 - Simple types (integers and booleans)
 - Structured types (products and sums)
 - Imperative types (references and exceptions)
 - Recursive types (linked lists and trees)
- The type systems of most common languages are first-order
- Then we move to second-order type systems
 - Polymorphism and abstract types

Q: Movies (378 / 842)

 This 1988 animated movie written and directed by Isao Takahata for Studio Ghibli was considered by Roger Ebert to be one of the most powerful anti-war films ever made. It features Seita and his sister Setsuko and their efforts to survive outside of society during the firebombing of Tokyo.

Computer Science

 This American-Canadian Turing-award winner is known for major contributions to the fields of complexity theory and proof complexity. He is known for formalizing the polynomial-time reduction, NP-completeness, P vs. NP, and showing that SAT is NP-complete. This was all done in the seminal 1971 paper "The Complexity of Theorem **Proving Procedures.**"

Q: Games (504 / 842)

 This 1985 falling-blocks computer game was invented by Alexey Pajitnov (Алексей Пажитнов) and inspired by pentominoes.

Simply-Typed Lambda Calculus

• Syntax: Terms e ::= x $| \lambda x:\tau$. $e | e_1 e_2$ $| n | e_1 + e_2 | iszero e$ | true | false | not e $| if e_1 then e_2 else e_3$

Types $\tau ::= int \mid bool \mid \tau_1 \rightarrow \tau_2$

- $\tau_1 \rightarrow \tau_2$ is the function type
- \rightarrow associates to the right
- Arguments have typing annotations : τ
- This language is also called F₁

Static Semantics of F₁

• The typing judgment

 $\Gamma \vdash \mathbf{e} : \tau$

- Some (simpler) typing rules:
 - $\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \qquad \frac{\Gamma,x:\tau\vdash e:\tau'}{\Gamma\vdash\lambda x:\tau.e:\tau\to\tau'}$

 $\Gamma \vdash e_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 : \tau_2$

 $\Gamma \vdash e_1 e_2 : \tau$

$$\begin{array}{c} \text{More Static Semantics of } \mathbf{F}_1 \\ \hline & \Gamma \vdash e_1 : \texttt{int} \quad \Gamma \vdash e_2 : \texttt{int} \\ \hline & \Gamma \vdash e_1 + e_2 : \texttt{int} \end{array}$$

Why do we have this mysterious gap? I don't know either!

 $\begin{array}{l} \hline \Box \vdash true : \texttt{bool} & \hline \Box \vdash e : \texttt{bool} \\ \hline \Box \vdash \texttt{true} : \texttt{bool} & \hline \Box \vdash \texttt{not} \ e : \texttt{bool} \\ \hline \Box \vdash e_1 : \texttt{bool} & \Box \vdash e_t : \tau \quad \Box \vdash e_f : \tau \\ \hline \Box \vdash \texttt{if} \ e_1 \texttt{ then} \ e_t \texttt{ else} \ e_f : \tau \end{array}$

Typing Derivation in F_1

• Consider the term

 λx : int. λb : bool. if b then f x else x

- With the initial typing assignment f : int \rightarrow Int
- Where Γ = f : int \rightarrow int, x : int, b : bool

 $\[Gamma \vdash f : int \to int \quad \[Gamma \vdash x : int]\]$

 $f: \texttt{int} \to \texttt{int}, x: \texttt{int}, b: \texttt{bool} \vdash \texttt{if} \ b \ \texttt{then} \ f \ x \ \texttt{else} \ x: \texttt{int}$

 $f: \texttt{int} \to \texttt{int}, x: \texttt{int} \vdash \lambda b: \texttt{bool.} \text{ if } b \text{ then } f \ x \text{ else } x: \texttt{bool} \to \texttt{int}$

 $f: \texttt{int} \to \texttt{int} \vdash \lambda x: \texttt{int}.\lambda b: \texttt{bool.} \text{ if } b \text{ then } f x \text{ else } x_1: \texttt{int} \to \texttt{bool} \to \texttt{int}$

Type Checking in F_1

- Type checking is easy because
 - Typing rules are syntax directed

- Typing rules are compositional (what does this mean?)
- All local variables are annotated with types
- In fact, type inference is also easy for F₁
- Without type annotations an expression may have <u>no unique type</u>

$$\cdot \vdash \lambda x. x : int \rightarrow int$$

 $\cdot \vdash \lambda x. \; x : bool \rightarrow bool$

Operational Semantics of F₁

• Judgment:

e ∜ v

• Values:

v ::= n | true | false | $\lambda x:\tau$. e

- The evaluation rules ...
 - Audience participation time: raise your hand and give me an evaluation rule.

Opsem of F₁ (Cont.)

Call-by-value evaluation_rules (sample)

if e_1 then e_t else $e_f \Downarrow v$

$$\overline{\lambda x} : \tau.e \Downarrow \lambda x : \tau.e$$

$$\underbrace{e_1 \Downarrow \lambda x} : \tau.e'_1 \quad e_2 \Downarrow v_2 \quad [v_2/x]e'_1 \Downarrow v$$

$$e_1 e_2 \Downarrow v$$

$$\underbrace{e_1 e_2 \Downarrow v}$$

$$\underbrace{e_1 \Downarrow n_1 \quad e_2 \Downarrow n_2 \quad n = n_1 + n_2}_{e_1 + e_2 \Downarrow n}$$

$$\underbrace{e_1 \Downarrow \text{true} \quad e_t \Downarrow v}_{\text{if } e_1 \text{ then } e_t \text{ else } e_f \Downarrow v}$$

$$\underbrace{e_1 \Downarrow \text{false} \quad e_f \Downarrow v}_{e_1 \Downarrow \text{false} \quad e_f \Downarrow v}$$
Evaluation is undefined for ill-typed programs !

Type Soundness for F_1

- Thm: If $\cdot \vdash e : \tau$ and $e \Downarrow v$ then $\cdot \vdash v : \tau$
 - Also called, <u>subject reduction</u> theorem, <u>type</u>
 <u>preservation</u> theorem
- This is one of the most important sorts of theorems in PL
- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...
- Proof: next time!

Homework

- Read actually-exciting Leroy paper
- Finish Homework 5?
- Work on your projects!
 - Status Update Due

