
#1

Simply-TypedSimply-Typed
Lambda CalculusLambda Calculus



#2

Back to School

• What is operational semantics? When would 
you use contextual (small-step) semantics?

• What is denotational semantics?
• What is axiomatic semantics? What is a 

verification condition? 
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Today’s (Short?) Cunning Plan

• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety
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Types
• A program variable can assume a range of 

values during the execution of a program

• An upper bound of such a range is called a 
type of the variable
– A variable of type “bool” is supposed to assume 

only boolean values
– If x has type “bool” then the boolean expression 

“not(x)” has a sensible meaning during every run 
of the program
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Typed and Untyped Languages

• Untyped languages
– Do not restrict the range of values for a given variable
– Operations might be applied to inappropriate arguments. 

The behavior in such cases might be unspecified
– The pure λ-calculus is an extreme case of an untyped 

language (however, its behavior is completely specified)

• (Statically) Typed languages
– Variables are assigned (non-trivial) types
– A type system keeps track of types
– Types might or might not appear in the program itself
– Languages can be explicitly typed or implicitly typed
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The Purpose Of Types
• The foremost purpose of types is to prevent certain 

types of run-time execution errors
• Traditional trapped execution errors

– Cause the computation to stop immediately
– And are thus well-specified behavior
– Usually enforced by hardware
– e.g., Division by zero, floating point op with a NaN
– e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
– Behavior is unspecified (depends on the state of the 

machine = this is very bad!)
– e.g., accessing past the end of an array
– e.g., jumping to an address in the data segment
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Execution Errors
• A program is deemed safe if it does not cause untrapped 

errors
– Languages in which all programs are safe are safe languages

• For a given language we can designate a set of forbidden 
errors
– A superset of the untrapped errors, usually including some trapped 

errors as well
• e.g., null pointer dereference

• Modern Type System Powers:
– prevent race conditions (e.g., Flanagan TLDI ‘05)
– prevent insecure information flow (e.g., Li POPL ’05)
– prevent resource leaks (e.g., Vault, Weimer)
– help with generic programming, probabilistic languages, …
– … are often combined with dynamic analyses (e.g., CCured)
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Preventing Forbidden Errors - 
Static Checking

• Forbidden errors can be caught by a 
combination of static and run-time checking

• Static checking
– Detects errors early, before testing
– Types provide the necessary static information 

for static checking
– e.g., ML, Modula-3, Java
– Detecting certain errors statically is undecidable 

in most languages
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Preventing Forbidden Errors - 
Dynamic Checking

• Required when static checking is 
undecidable
– e.g., array-bounds checking

• Run-time encodings of types are still used 
(e.g. Lisp)

• Should be limited since it delays the 
manifestation of errors

• Can be done in hardware (e.g. null-pointer)
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Why Typed Languages?

• Development
– Type checking catches early many mistakes
– Reduced debugging time
– Typed signatures are a powerful basis for design
– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications
– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking
– Safe languages are easier to analyze statically

• the compiler can generate better code
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Why Not Typed Languages?

• Static type checking imposes constraints on the 
programmer
– Some valid programs might be rejected
– But often they can be made well-typed easily
– Hard to step outside the language (e.g. OO programming 

in a non-OO language, but cf. Ruby, OCaml, etc.)

• Dynamic safety checks can be costly
– 50% is a possible cost of bounds-checking in a tight loop

• In practice, the overall cost is much smaller

– Memory management must be automatic ) need a 
garbage collector with the associated run-time costs

– Some applications are justified in using weakly-typed 
languages (e.g., by external safety proof)
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Safe Languages
• There are typed languages that are not safe 

(“weakly typed languages”)
• All safe languages use types (static or dynamic)

• We focus on statically typed languages

Assembly?C, C++, 
Pascal, ...

Unsafe

λ-calculusLisp, Scheme, Ruby, 
Perl, Smalltalk, 
PHP, Python, …

ML, Java, 
Ada, C#, 

Haskell, ...

Safe

DynamicStatic

UntypedTyped
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Properties of Type Systems
• How do types differ from other program 

annotations?
– Types are more precise than comments
– Types are more easily mechanizable than 

program specifications

• Expected properties of type systems:
– Types should be enforceable
– Types should be checkable algorithmically
– Typing rules should be transparent

• Should be easy to see why a program is not well-typed
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Why Formal Type Systems?

• Many typed languages have informal 
descriptions of the type systems (e.g., in 
language reference manuals)

• A fair amount of careful analysis is required 
to avoid false claims of type safety

• A formal presentation of a type system is a 
precise specification of the type checker
– And allows formal proofs of type safety

• But even informal knowledge of the 
principles of type systems help
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Formalizing a Language
1. Syntax

• Of expressions (programs)
• Of types
• Issues of binding and scoping

2. Static semantics (typing rules)
• Define the typing judgment and its derivation rules

3. Dynamic Semantics (e.g., operational)
• Define the evaluation judgment and its derivation rules

4. Type soundness
• Relates the static and dynamic semantics
• State and prove the soundness theorem
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Typing Judgments

• Judgment (recall)
– A statement J about certain formal entities
– Has a truth value ² J

– Has a derivation ` J (= “a proof”)

• A common form of typing judgment: 
Γ ` e : τ	 	 (e is an expression and τ is a type)

• Γ (Gamma) is a set of type assignments for the free 
variables of e
– Defined by the grammar Γ ::= ¢ | Γ, x : τ 
– Type assignments for variables not free in e are not 

relevant
– e.g,    x : int, y : int ` x + y : int
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Typing rules

• Typing rules are used to derive typing 
judgments

• Examples:



#18

Typing Derivations

• A typing derivation is a derivation of a typing 
judgment (big surprise there …)

• Example:

• We say Γ ` e : τ to mean there exists a derivation 
of this typing judgment (= “we can prove it”)

• Type checking: given Γ, e and τ find a derivation
• Type inference: given Γ and e, find τ and a 

derivation
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Proving Type Soundness

• A typing judgment is either true or false
• Define what it means for a value to have a type

v 2 k τ k
(e.g. 5 2 k int k and true 2 k bool k )

• Define what it means for an expression to have a 
type

e 2   j τ j     iff     8v. (e ⇓ v ) v 2 k τ k)
• Prove type soundness

If ¢ ` e : τ then e 2 j τ j
or equivalently

If ¢ ` e : τ and e ⇓ v then v 2 k τ k
• This implies safe execution (since the result of a 

unsafe execution is not in k τ k for any τ)
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Upcoming Exciting Episodes
• We will give formal description of first-order type 

systems (no type variables)
– Function types (simply typed λ-calculus)
– Simple types (integers and booleans)
– Structured types (products and sums)
– Imperative types (references and exceptions)
– Recursive types (linked lists and trees)

• The type systems of most common languages are 
first-order

• Then we move to second-order type systems
– Polymorphism and abstract types



Q:  Movies  (378 / 842) 

• This 1988 animated movie written 
and directed by Isao Takahata for 
Studio Ghibli was considered by 
Roger Ebert to be one of the most 
powerful anti-war films ever made. 
It features Seita and his sister 
Setsuko and their efforts to survive 
outside of society during the 
firebombing of Tokyo.  



Computer Science
• This American-Canadian Turing-award 

winner is known for major contributions 
to the fields of complexity theory and 
proof complexity. He is known for 
formalizing the polynomial-time 
reduction, NP-completeness, P vs. NP, 
and showing that SAT is NP-complete. 
This was all done in the seminal 1971 
paper “The Complexity of Theorem 
Proving Procedures.”



Q:  Games  (504 / 842) 

•This 1985 falling-blocks 
computer game was invented by 
Alexey Pajitnov (Алексей 
Пажитнов) and inspired by 
pentominoes.  
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Simply-Typed Lambda Calculus
• Syntax:

Terms     e ::=  x | λx:τ. e | e1 e2

                    |  n | e1 + e2 | iszero e
                    | true | false | not e           

                               | if e1 then e2 else e3

 Types     τ ::= int | bool | τ1 ! τ2

•  τ1 ! τ2 is the function type

•  ! associates to the right
• Arguments have typing annotations :τ
• This language is also called F1

Notice :τ
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Static Semantics of F1

• The typing judgment

Γ ` e : τ
• Some (simpler) typing rules: 
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More Static Semantics of F1

Why do we have this mysterious gap? I don’t know either!
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Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment  f : int ! Int

– Where Γ = f : int ! int, x : int, b : bool
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Type Checking in F1

• Type checking is easy because
– Typing rules are syntax directed
– Typing rules are compositional (what does this mean?)
– All local variables are annotated with types

• In fact, type inference is also easy for F1

• Without type annotations an expression may have 
no unique type

¢ ` λx. x : int ! int

¢ ` λx. x : bool ! bool



#29

Operational Semantics of F1

• Judgment:

e ⇓ v
• Values:

v ::= n | true | false | λx:τ. e
• The evaluation rules …

– Audience participation time: raise your hand and 
give me an evaluation rule. 
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Opsem of F1 (Cont.)

• Call-by-value evaluation rules (sample)

Evaluation is 
undefined for ill-
typed programs ! 

Where is the 
Call-By-Value? 
How might we 

change it? 
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Type Soundness for F1

• Thm: If ¢  ` e : τ  and e ⇓ v then ¢ ` v : τ
– Also called, subject reduction theorem, type 

preservation theorem

• This is one of the most important sorts of 
theorems in PL

• Whenever you make up a new safe language 
you are expected to prove this
– Examples: Vault, TAL, CCured, …

• Proof: next time!
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Homework

• Read actually-exciting Leroy paper
• Finish Homework 5?
• Work on your projects!

– Status Update Due 
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