Graduate Programming Languages
Homework Assignment 5

The previous homework assignment was largely theoretical. This home-
work assignment is largely practical.

In class we have covered operational semantics (large- and small-step),
denotational semantics, axiomatic semantics (including verification condi-
tion generation) and some abstract interpretation. You are now qualified to
pull ideas from many of those techniques together and create a non-trivial
program analysis.

This analysis will target off-the-shelf C programs. We will use the CIL
library to parse and process C programs into an IMP-like OCaml representa-
tion. We will use the Z3 automated theorem prover of de Moura and Bjorner
to reason about infeasible paths or otherwise decide questions of logic.

Our analysis will automatically generate test inputs that will force the
subject program to cover all of its branches. This is undecidable in general
(by direct reduction with the halting problem). Automated test input (and
test case) generation is a research problem that is receiving quite a bit of
attention; see the papers on the course webpage for more information.

I have provided an introductory analysis. It performs flow-sensitive, path-
sensitive, context-insensitive, intraprocedural path enumeration, symbolic
execution, and constraint generation to create test inputs. Unlike previ-
ous assignments, for this assignment you may change anything in the main
file you like.

Initial steps:

1. Compile tigen, our test-input generation program. See the file README-GradPL. txt
in the code archive for details. Reproducing the systems research re-
sults of others is a key part of modern research. Getting the code up
and running is explicitly part of this assignment and is your responsi-
bility. Talk to your friends, scour the Internet — do whatever it takes
to make it happen.

2. Take a look at some of the included small subject programs. Think
about how you would generate test inputs to force them to cover all
branches. Then run tigen and inspect the test cases it actually creates.

As a sanity check, on my machine, the report.txt output is:



balanced.i.c : You reached 1 MAX IS 8
bubblesort.i.c : You reached 5 MAX IS 6
conway.i.c : You reached 6 MAX IS 6
dotprod.i.c : You reached 2 MAX IS 2
eq-index.i.c : You reached 0 MAX IS 6
fibo.i.c : You reached 6 MAX IS 6
gcd.i.c : You reached 4 MAX IS 4
hailstone.i.c : You reached 5 MAX IS 6
leven.i.c : You reached 3 MAX IS 10
mymin-1.i.c : You reached 7 MAX IS 8
roman.i.c : You reached 21 MAX IS 28
simple-1.i.c : You reached 2 MAX IS 2
simple-2.i.c : You reached 4 MAX IS 4
simple-3.i.c : You reached 8 MAX IS 8
string.i.c : You reached 0 MAX IS 8
subseqsum.i.c : You reached O MAX IS 12

3. Read some of the papers associated with this homework on the course
webpage.

Exercise 1: This exercise is open-ended. You must do something to con-
vince me that you have an integrated understanding of the theory and prac-
tice of using PL research techniques to analyze programs. More concretely,
you must modify tigen.ml so that it is “better” in a way of your choosing.
As a rough estimate, I would expect a diff of your modified source to in-
dicate at least 200 changed lines. Then you must write up a formal three-
or four-paragraph explanation of what you did and why it was worthwhile.
Your explanation should motivate your changes and explain why the problem
you tackled is important.
Any of the following could suffice:

e Modify tigen so that it handles string-valued data by integrating with
the DPrle external decision procedure.

e Modify tigen so that it handles loops in an intelligent manner. For
example, you might use a dataflow-style join — if it is to possible reach
the loop head knowing z = 0 A y = 55 and it is also possible to reach
the loop head knowing x = 5 A y = 55, you should process the loop in
a state where y = 55 (or, better yet, x > 0 Ay = 55).

e Modify tigen so that it handles arrays. Note that Z3 already has built-
in handling for the McCarthy select and update axioms, but you’ll have
to integrate it.

e Modify tigen so that it handles the heap (i.e., dynamic pointers) more
precisely. For example, you might introduce an explicit handling of



malloc (which either returns 0 or a new non-zero address that is dis-
tinct from all previous addresses) and free.

Modify tigen so that it uses computed alias information. CIL comes with
John Kodumal’s implementation of Manuvir Das’ One-Level Flow alias
analysis to aid in reasoning about pointers, but it is not currently used
in this project. As a hint, alias analysis information leads directly to
“distinctness” constraints. This would be a relatively short change, so
you should also do something else and /or provide compelling examples
to show that the alias analysis really helps.

Modify tigen so that its performance and scalability are non-trivially
improved. This typically requires more “engineering” than “theory”,
but getting an analysis to run on millions of lines of code (e.g., the Linux
kernel, SQL Server) is very difficult. Your modified version should run
significantly faster on large benchmarks of your choosing.

Modify or post-process tigen so that the performance of its generated
test inputs is non-trivially improved. That is, perform test suite selec-
tion or test suite reduction or even time-aware test suite prioritization.
Ideally we would like the smallest number of test cases that require
the smallest amount of wall-clock time to execute but still covert the
greatest fraction of the subject programs. This is a reasonable project
if you are more interested in CS theory than in systems hackery.

Modify tigen to handle record data types (e.g., structures and /or unions).
Modify tigen to handle floating-point data types.

Modify tigen to accept additional constraints provided by the user (e.g.,
pre- and post-conditions on the subject program, an external constraint
language that you parse at the beginning, or whatever you like). For
example, you may want to specify that you're only interested in test
inputs involving negative numbers. Part of a larger project might be
to have tigen output multiple diverse test inputs that cover the same
path.

Modify tigen to be context-sensitive. You might compute the call graph
and analyze the functions in reverse dependency order. You might do
a full-blown CFL reachability analysis. Or you might just start in the
target function and take very long paths through the entire reachable
program. Handling recursion is a related topic.

Modify tigen so that it implements key ideas from Godefroid et al.’s
DART project. This would presumably involve some notion of random
test input generation (see their paper).



e Modify tigen so that it implements key ideas from Sen et al.’s CUTE
project. This would presumably involve some notion of concolic testing
(see their paper).

e Modify tigen so that it implements key ideas from Lakhotia et al.’s
AUSTIN project. This would presumably involve some of the empiri-
cal optimizations and best practices described in their paper.

You should submit

1. your modified uvaid-tigen.ml file
2. an ASCII text file containing your multi-paragraph report,!

3. as well as any other compelling figures or charts that you feel back up
your case

4. two (2) new subject programs in the style of the subject programs
already included. Your program should do well on those new subject
programs.

Recall that you should demonstrate that you did something useful with re-
spect to this homework’s goals of using program analysis techniques either
(1) in your research or (2) to understand programs or (3) to find bugs or (4)
to verify properties of programs or (5) to make related tools more usable.

Exercise 2: Compose a brief (one- or two-paragraph) email to one of the
authors of the tools or papers you used in this homework and send the email
to me (not to that person). In addition, indicate whether you are willing to
use your name or whether you would like to be portrayed as an anonymous
student in my class. I will check off the fact that you wrote something and
potentially forward it along. You can comment on any aspect of your expe-
rience with their work — your comments need not be positive. For example,
you might ask Bjorner why Z3 doesn’t handle multiplication, complain to
Kodumal or Das that OLF isn’t precise enough for C programs, or tell Nec-
ula or McPeak that you find CIL’s memory lvalue semantics unintuitive.
You might even write to Lakhotia and ask him how he managed to scale to
large programs given all the difficulties you observed when wrestling with
C. If you do offer criticism, strive to make it constructive by commenting
on what you would have liked to have seen instead or how you might like
to see things improved if the time were available. If you absolutely cannot
think of anything to say, thank them for making their tools available and let
them know that you used them with success. Even minor comments about
documentation or a fresh-eyed perspective on usability can be helpful.
The purpose of this non-standard exercise is two-fold.

You may also submit a PDF version if you like; the ASCII requirement is so that I
can copy and quote your text easily when I'm evaluating and commenting on your work.

4



e First, I have observed multiple instances in this class of a student be-
ing unwilling to contact the author of some publicly-available project.
While I realize that you don’t want to be known as a whiny grad stu-
dent who didn’t bother to read the manual, it’s also not worth wasting
your time to try to decipher a research prototype when the author is
only an email away. I think it would legitimately be good practice for
many of you to correspond with a random researcher. You may not
get a response, but the sky won’t fall. (In addition, I know the people
involved in all of this software and they are all quite friendly.)

e Second, internships are not the only way to build up contacts and
networks. It is entirely reasonable to grow a friendship or collaboration
with someone over time, starting with a lowly email about research,
moving on to chatting a conferences, and eventually working together
on new research. You're rarely certain of exactly where you will end up
or what you will be working on, so it behooves you to know as many
people out there as possible.



