One-Slide Summary

- If a problem is uncomputable or undecidable, then no deterministic terminating algorithm can exist that correctly solves it.
- The halting problem is undecidable.
- Many problems related to computer security, such as detecting worms and viruses, are undecidable.
- Undecideability proofs work by contradiction.
- Object-oriented programming has a lively history.

Outline

- Gödel's Proof
- Unprovability
- Algorithms
- Computability
- The Halting Problem
- OOP History

Informal Proof

(define (paradox)
 (if (halts? 'paradox)
 (loop-forever)
 #t))

If paradox halts, the if test is true and it evaluates to (loop-forever) - it doesn’t halt!
If paradox doesn’t halt, the if test if false, and it evaluates to #t. It halts!

Evaluates-to-3 Problem

Input: A procedure specification P
Output: true if evaluating (P) would result in 3; false otherwise.

> (eval-to-three? '(lambda () (+ 2 1)))
#t
> (eval-to-three? '(lambda () (* 2 2)))
#f

Is “Evaluates to 3" computable?
Proof by Contradiction

Goal: Show A cannot exist.
1. Show X is nonsensical.
2. Show that if you have A you can make X.
3. Therefore, A must not exist.

\[X = \text{halts? algorithm} \]
\[A = \text{eval-to-three? algorithm} \]

Undecidability Proof

Suppose we could define eval-to-3? that decides it. Then we could define halts?:

\[
\text{(define (halts? P)} \\
\text{ (eval-to-three?)} \\
\text{ '(lambda () (begin (P) 3))})
\]

\[
\text{if #t: it evaluates to 3, so we know (P) must halt.}
\]
\[
\text{if #f: the only way it could not evaluate to 3, is if (P) doesn't halt. (Note: assumes (P) cannot produce an error.)}
\]

Hello-World Problem

Input: An expression specification \(E \)
Output: true if evaluating \(E \) would print out “Hello World!”; false otherwise.

Is the Hello-World Problem computable?

Uncomputability Proof

Suppose we could define prints-hello-world? that solves it. Then we could define halts?:

\[
\text{(define (halts? P)} \\
\text{ (prints-hello-world?)} \\
\text{ '((begin ((remove-all-prints P)) (print "Hello World!")))})
\]

From Paul Graham’s “Undergraduation”:

My friend Robert learned a lot by writing network software when he was an undergrad. One of his projects was to connect Harvard to the Arpanet; it had been one of the original nodes, but by 1984 the connection had died. Not only was this work not for a class, but because he spent all his time on it and neglected his studies, he was kicked out of school for a year. ... When Robert got kicked out of grad school for writing the Internet worm of 1988, I envied him enormously for finding a way out without the stigma of failure. ... It all evened out in the end, and now he’s a professor at MIT. But you’ll probably be happier if you don’t go to that extreme; it caused him a lot of worry at the time.

\[
\text{3 years of probation, 400 hours of community service, \$10,000+ fine}
\]
Worm Detection Problem
Input: A program P and input I
Output: true if evaluating $(P \ I)$ would cause a remote computer to be “infected”.

Virus Detection Problem
Input: A program specification P
Output: true if evaluating (P) would cause a file on the host computer to be “infected”.

Morris Internet Worm (1988)
- $P = \text{fingerd}$
 - Program used to query user status
 - Worm also attacked other programs
- $I = \text{"nop} 400 \text{ pushl } \$68732f \text{ pushl } \$6e69622f \text{ movl sp,} r10 \text{ pushl } \$0 \text{ pushl } \$0 \text{ pushl } r10 \text{ pushl } \$3 \text{ movl sp,ap chmk } \$3b"
 - (is-worm? ‘(P I)) should evaluate to #t
- Worm infected several thousand computers (~10% of Internet in 1988)

Liberal Arts Trivia: Greek Mythology
- This multi-headed hound guards the gates of Hades and prevents those who have crossed the river Styx from ever escaping. The task of capturing it alive, without using weapons, was the final labor assigned to Heracles by King Eurystheus.

Liberal Arts Trivia: Music
- This genre of rock music developed in the late 1960s and early 1970s, largely in the UK and USA. With roots in blues-rock and psychedelic rock, it developed a thick, massive sound, characterized by highly amplified distortion, extended guitar solos, emphatic beats, and overall loudness. Lyrics and performance styles are generally associated with masculinity and machismo. Early bands included Led Zeppelin and Black Sabbath.

Computer Security Paradoxes
- Is is-virus? computable?

Uncomputability Proof
Suppose we could define is-virus? Then:
(define (halts? P)
 (is-virus? '(lambda () (begin ((remove-infects P)) (infect-files)))))
Uncomputability Proof

(define (halts? P)
 (is-virus?
 '(lambda ()
 (begin ((remove-infects P))
 (infect-files)))))

#t: Since it is a virus, we know (infect-files) was evaluated, and P must halt.

#f: The (infect-files) would not evaluate, so P must not halt.

“Solving” Undecidable Problems

• No perfect solution exists:
 - Undecidable means there is no procedure that:
 1. Always gives the correct answer
 and also 2. Always terminates
 • Must give up one of these to “solve” undecidable problems
 - Giving up #2 is not acceptable in most cases
 - Must give up #1
 • Or change the problem: e.g., detect file infections during an execution

Conclusion?

• Anti-Virus programs cannot exist!

Actual is-virus? Programs

• Give the wrong answer sometimes
 - “False positive”: say P is a virus when it isn’t
 - “False negative”: say P is safe when it is
• Database of known viruses: if P matches one of these, it is a virus
• Clever virus authors can make viruses that change each time they propagate
 - Emulate program for a limited number of steps; if it doesn’t do anything bad, assume it is safe

Proof Recap

• If we had is-virus? we could define halts?
• We know halts? is undecidable
• Hence, we can’t have is-virus?
• Thus, we know is-virus? is undecidable

History of Object-Oriented Programming
Pre-History: MIT’s Project Whirlwind (1947-1960s)

Why Whirlwind?

Whirlwind Innovations

Liberal Arts Trivia: Spanish Culture

Liberal Arts Trivia: Art History

Liberal Arts Trivia: Grammar
Sketchpad

- Ivan Sutherland, 1963 (PhD thesis supervised by Claude Shannon)
- Interactive drawing program
- Light pen
- Turing Award 1988

Components in Sketchpad

Objects in Sketchpad

In the process of making the Sketchpad system operate, a few very general functions were developed which make no reference at all to the specific types of entities on which they operate. These general functions give the Sketchpad system the ability to operate on a wide range of problems. The motivation for making the functions as general as possible came from the desire to get as much result as possible from the programming effort involved. For example, the general function for expanding instances makes it possible for Sketchpad to handle any fixed geometry subpicture. The rewards that come from implementing general functions are so great that the author has become reluctant to write any programs for specific jobs.

Each of the general functions implemented in the Sketchpad system abstracts, in some sense, some common property of pictures independent of the specific subject matter of the pictures themselves.

Ivan Sutherland, Sketchpad: a Man-Machine Graphical Communication System, 1963 (major influence on Alan Kay developing OOP in 1970s)

Simula

- Considered the first “object-oriented” programming language
- Language designed for simulation by Kristen Nygaard and Ole-Johan Dahl (Norway, 1962)
- Had special syntax for defining classes that package state and procedures together

Counter in Simula

class counter;
 integer count;
begin
 procedure reset(); count := 0; end;
 procedure next();
 count := count + 1; end;
 integer procedure current();
 current := count; end;
end

XEROX Palo Alto Research Center (PARC)

1970s:
- Bitmapped display
- Graphical User Interface
 - Steve Jobs paid $1M to visit PARC (bought their stock), and returned to make Apple Lisa/Mac
- Ethernet
- First personal computer (Alto)
- PostScript Laser Printers
- Object-Oriented Programming
“Don’t worry about what anybody else is going to do... The best way to predict the future is to invent it. Really smart people with reasonable funding can do just about anything that doesn’t violate too many of Newton’s Laws!”
— Alan Kay, 1971

Tablet computer
Intended as tool for learning
Kay wanted children to program it also
Hallway argument, Kay claims you could define “the most powerful language in the world in a page of code”
Proof: Smalltalk
- Scheme is as powerful, but takes two pages
- Before the end of CS 1120, we will see an equally powerful language that fits in ¼ page

BYTE Magazine, August 1981

Everything is an object
Objects communicate by sending and receiving messages
Objects have their own state (which may contain other objects)
How do you do 3 + 4?
send the object 3 the message “+ 4”

Counter in Smalltalk

Counter in Python
Pencil and Paper Time

- Write a Python class `FriendList` that supports the following operations:
 - Initially, the list is empty.
 - `.add(string)` adds a new friend of the given name, but does nothing if you're already friends.
 - `.unfriend(string)` removes the friend of the given name.
 - `.listing()` prints each friend in the friend list on its own line.

```python
class FriendList:
    def __init__(self):
        self.friends = []
    def add(self, friend):
        if not friend in self.friends:
            self.friends = self.friends + [friend]
    def unfriend(self, loser):
        if loser in self.friends:
            self.friends.remove(loser)
    def listing(self):
        for buddy in self.friends:
            print buddy
```

FriendList

```python
class FriendList:
    def __init__(self):
        self.friends = []
    def add(self, friend):
        if not friend in self.friends:
            self.friends = self.friends + [friend]
    def unfriend(self, loser):
        if loser in self.friends:
            self.friends.remove(loser)
    def listing(self):
        for buddy in self.friends:
            print buddy
```

Who was the first object-oriented programmer?

- Ada, Countess of Lovelace, around 1843

By the word operation, we mean any process which alters the mutual relation of two or more things, be this relation of what kind it may. This is the most general definition, and would include all subjects in the universe.

Again, it might act upon other things besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine... Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.

Ada, Countess of Lovelace, around 1843

Homework

- Re-Read Chapter 11 for Wednesday