Sort
Procedures
and
Quicker
Sorting

One-Slide Summary

g is in O(f) iff there exist positive constants ¢
and n, such that g(n) < cf(n) for all n>n,.

e If g is in O(f) we say that f is an upper bound
for g.

» We use Omega Q for lower bounds and Theta
© for tight bounds.

» Knowing a running time is in O(f) tells you that

the running time is not worse than f. This can
only be good news.

» Some way to sort have different running times.

#2

Outline
« Finish up “Magic”
» Administrivia: your views, voting
« Sorting: timing and costs
« Insertion Sort
 Better sorting?
e End early? PartiallyClips| —

Exam 1

» Handed out at end of class on Wed Sep 29,
due at the beginning of class Wed Oct 06
- You have one week, should take 2-4 hours

e Open Book - No DrScheme / DrRacket

» Open TAs & Profs - No Friends

» Covers everything through Wed Sep 29
including:
- Lectures 1-11, Book Chapters 1-8, PS 1-4

 Post on the forum if you want a review session

Time On Problem Sets: The Bad

- “I believe this PS3 has taken me over 10 hours to
complete, not including reading for class.”

- “I'd say this lab took around a total of just over 3
hours for me, which is not too bad | suppose.”

» Some people mentioned that they found the PS
long: 10 hours was the max mentioned time.

- "One credit of laboratory work can equal one to four hours per week." - UVA Registrar
http://www.virginia.edu/registrar/about.html

- "a 3 hour course requires about 10 hours/week for the entire semester.” - UVA
Kinesiology http://records.uva.acalog.com/preview_program.php?catoid=11&poid=1052&bc=1

- "aratio of 4 clock hours per credit hour per week." - UVA Clinical Nursing
http://www.nursing.virginia.edu/media/NEW%20Student%20Handbook%20CNL%2007-08. pdf

- "Total contact hours for a course should account for readings, online time, outside
preparation and study. Total contact hours required per credit hour are as follows: 135
hours for a 3-credit course [9 hours a week for 15 weeks]." - UVA Syllabus Template

http://www.faculty.virginia.edu/bbcp/documents/Final_Syllabus_Template.doc #5

Time On Problem Sets: The Good

- “At least, personally, | could not have done this PS
without their help. Is that really what the
problem sets are supposed to be?”

» PS3 is one of the two hardest problem sets.
Remember, you are not expected to know or do it all.

- 86% of you had perfect coding scores on PS3. 89%
on PS2. You may be working too hard!
 PS Design: Open-Ended Grading, not Rote!

- Final problems allow us to distinguish between
superstars: currently you are all superstars!

- Example: Skipping 10-11 (convert-lcommands,
rewrite-lcommands) on PS3: 19/22

- Course curve: An “A” does not require perfect PS 4

Tutoring and Hints

- “Is there any way to get one on one tutoring for
this type of problem set?”

« In the past, the ACM and ACM-W have offered
one-on-one tutoring. Send me (or the course
staff) email if you are interested; | will try to
set something up.

- “More hints written into PS if possible please? This
way | can work on it independently of TAs”

e | will add more hints on a optional links for PS4
on. On your honor!

#7

Writing The Code

- “I'd rather have maybe 4 or 5 comprehensive
questions where | wrote the entire snippet,
because | would get more chances to work off of
my own code.”

» Multiple people have this comment. Your wish
is granted. Check out PS4, where there is no

“fill in the blanks” code at all.

- “Also, 1 dropped problem set grade please!”

e More than zero have this comment. Vote?

- If so: drop lowest PS that is not the final project
and that you got at least three points on. "

Recall: Asymptotic Complexity
g is in O(y) iff: There are positive
constants ¢ and n, such that
g(n) < cf(n) for all n>n,.
g is in Q(f) iff: There are positive
constants ¢ and n, such that
g(n) = cf(n) for all n>n,.

g is in O(y) iff: gisin O(f) and g is
in Q).

#9

Is our sort good enough?

Takes over 1 second to sort
1000-length list. How lon
would it take to sort 1 million
items?

1s = time to sort 1000

4s ~ time to sort 2000

1M is 1000 * 1000
Sorting time is »?

s0, sorting 1000 times as many items will take
1000?times as long = 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.
It would take 20,000 years to process a VISA transaction at this rate.

#10

Which of these is true?

 QOur sort procedure is too slow for VISA
because its running time is in O(n?)

 Our sort procedure is too slow for VISA
because its running time is in Q(#n?)

 Our sort procedure is too slow for VISA
because its running time is in ©(n?)

#11

Which of these is true?

. edure is too
be ning time 157 2

 Our sort procedure is too slow for VISA
because its running time is in Q(n?)

 Our sort procedure is too slow for VISA
because its running time is in ©(n?)

Knowing a running time is in O(f) tells you the running time is not worse
than /. This can only be good news. It doesn’t tell you anything about
how bad it is. (Lots of people and books get this wrong.)

#12

Liberal Arts Trivia: Art History

» Name the work shown
and its sculptor. The
artist is generally
considered the
progenitor of modern
sculpture: he departed
from mythology and
allegory and modeled the
human body with
realism, celebrating
individual character and
physicality.

Liberal Arts Trivia: Chinese History

« This period of Chinese history roughly
corresponds to the Eastern Zhou dynasty (8™
century BCE to 5™ century BCE). China was
feudalistic, with Zhou kings controlling only
the capital (Luoyang) and granting the rest as
fiefdoms to several hundred nobles (including
the Twelve Princes). As the era unfolded,
powerful states annexed smaller ones until a
few large principalities controlled China. By 6"
century BCE, the feudal system had crumbled
and the Warring States period had begun.

#14

Sorting Cost

(define (best-first-sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (best-first-sort (delete Ist best) cf)))))
(define (find-best Ist cf)
(if (null? (cdr Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

The running time of best-first-sort is in @(n?) where n
is the number of elements in the input list.

Assuming the comparison function

passed as cf has constant running time.

#15

Divide and Conquer sorting?

 Best first sort: find the lowest in the list,
add it to the front of the result of sorting
the list after deleting the lowest.

e Insertion sort: insert the first element of
the list in the right place in the sorted rest
of the list.

- Let's write this together!
- Hint: use/write helper function insert-one
- (insert-one 2 (list1345))-->(12345)

#16

insert-sort

(define (insert-sort Ist cf)
(if (null? Ist) null
(insert-one (car Ist)
(insert-sort (cdr Ist) cf) cf)))

Try writing insert-one.
(define (insert-one element Ist cf) ...)

(insert-one 2 (list 1 35)<)-->(1235)

#17

insert-one

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist)
(insert-one el (cdr Ist) cf)))))

#18

How much work is insert-sort?

(define (insert-sort Ist cf)
(if (null? Ist) null
(insert-one (car Ist) (insert-sort (cdr Ist) cf) cf)))

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist) (insert-one el (cdr Ist) cf)))))

clooweY o

How many times does insert-
y OCEAN'S TWO

sort evaluate insert-one?

3

How much work is insert-sort?
(define (insert-sort Ist cf)

(if (null? Ist) null
(insert-one (car Ist) (insert-sort (cdr Ist) cf) cf)))

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist) (insert-one el (cdr Ist) cf)))))

How many times does insert-
sort evaluate insert-one?

ntimes (once for each element)

running time of insert-
one is ?

#20

How much work is insert-sort?
(define (insert-sort Ist cf)

(if (null? Ist) null
(insert-one (car Ist) (insert-sort (cdr Ist) cf) cf)))

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist) (insert-one el (cdr Ist) cf)))))

How many times does insert-
sort evaluate insert-one?

ntimes (once for each element)

running time of insert
one is in O(n)

#21

How much work is insert-sort?

(define (insert-sort Ist cf)
(if (null? Ist) null
(insert-one (car Ist) (insert-sort (cdr Ist) cf) cf)))

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist) (insert-one el (cdr Ist) cf)))))

How many times does insert-
sort evaluate insert-one?
ntimes (once for each element)

insert-sort has running time in ©(»n?) where n is the
number of elements in the input list

running time of insert-
one is in O(n)

#22

Which is better?

e |s insert-sort faster than best-first-sort?

AccuPOP™ - Probability of Precipitation

B2%

51% 38% I2% B1% 63% 113%

BP-11P 11P-24 2A-5A SABA BA-11A 2P-5P 5P-BP
Mon
7123 =93%
“““

Toie

#23

> (insert-sort < (revintsto 20))
(12345678910111213 141516 17 18 19 20)
Requires 190 applications of <

> (insert-sort < (intsto 20))
(12345678910111213141516 17 18 19 20)
Requires 19 applications of <

> (insert-sort < (rand-int-list 20))
(01116 19 23 26 31 32 32 34 42 45 53 63 64 81 82 84 84 92)
Requires 104 applications of <

> (best-first-sort < (intsto 20))

(1234567891011121314151617 18 19 20)
Requires 210 applications of <

> (best-first-sort < (rand-int-list 20))

(4416181920 23 32 36 51 53 59 67 69 73 75 82 82 88
89)
Requires 210 applications of <

best-first-sort vs. insert-sort

» Both are ©(n?) worst case (reverse list)

« Both are @(n?) when sorting a
randomly ordered list
- But insert-sort is about twice as fast

e insert-sort is ©(n) best case (ordered
input list)

Can we do better?

(insert-one < 88
(list12356236377 89 90))

Suppose we had procedures
(first-half Ist)

(second-half Ist)
that quickly divided the list in two halves?

quicker-insert using halves

(define (quicker-insert el Ist cf)
(if (null? Ist) (list el) ;; just like insert-one
(if (null? (cdr Ist))

(if (cf el (car Ist)) (cons el Ist) (list (car Ist) el))

(let ((front (first-half Ist))
(back (second-half Ist)))

(if (cf el (car back))
(append (quicker-insert el front cf) back)
(append front
(quicker-insert el back cf)))))))

#28

Evaluating quicker-sort

> (quicker-insert < 3 (list 124 57))
(quicker-insert #<procedure:traced-<>3 (124 57))

;3 R (define (quicker-insert el Ist cf)
(<35) (if (null? Ist) (list el)

(if (null? (cdr Ist))
(quicker-insert #<procedure:traced-<> 3 (1 2 4)) (if (cf el (car Ist))

I; 31) (cons el Ist)

(<34) (list (car Ist) el))

It (let ((front (first-half Ist))

icker . ’ (back (second-half Ist)))
I(ﬁfl\;kgr insert #<procedure:traced-<> 3 (1 2)) (if (cf el (car back))
(append (quicker-insert el front cf) back)
(append front

|

|

| #f (quicker-insert el back cf)))))))
| (quicker-insert #<procedure:traced-<> 3 (2))

[11(<32)

l13) i |

(i 23) _Every time we call qwck_er-_
(234 insert, the length of the list is
(123457) approximately halved!

#29

How much work is quicker-sort?

(define (quicker-insert el Ist cf)
(if (null? Ist) (list el)
(if (null? (cdr Ist))
(if (cf el (car Ist))
(cons el Ist)
(list (car Ist) el))

Each time we call
quicker-insert, the size of
Ist halves. So doubling
the size of the list only _

. th b f (let ((front (first-half Ist))
Increases the number o back (second-half Ist)))

(
calls by 1. (if (cf el (car back))
(append (quicker-insert el front cf) back)
(append front
(quicker-insert el back cf)))))))

List Size # quicker-insert applications
1 1
2 2
4 3
8 4
16 5

#30

Homework

e Problem Set 4
» Read Chapter 8
e Exam 1 Out Soon

#31

