
Sort Sort
ProceduresProcedures

andand
Quicker Quicker
SortingSorting

#2

One-Slide Summary
• g is in O(f) iff there exist positive constants c

and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

• If g is in O(f) we say that f is an upper bound
for g.

• We use Omega Ω for lower bounds and Theta
Θ for tight bounds.

• Knowing a running time is in O(f) tells you that
the running time is not worse than f. This can
only be good news.

• Some way to sort have different running times.

#3

Outline
• Finish up “Magic”
• Administrivia: your views, voting
• Sorting: timing and costs
• Insertion Sort
• Better sorting?
• End early?

#4

Exam 1
• Handed out at end of class on Wed Sep 29,

due at the beginning of class Wed Oct 06
– You have one week, should take 2-4 hours

• Open Book – No DrScheme / DrRacket
• Open TAs & Profs – No Friends
• Covers everything through Wed Sep 29

including:
– Lectures 1-11, Book Chapters 1-8, PS 1-4

• Post on the forum if you want a review session

#5

Time On Problem Sets: The Bad
– “I believe this PS3 has taken me over 10 hours to

complete, not including reading for class.”
– “I'd say this lab took around a total of just over 3

hours for me, which is not too bad I suppose.”

• Some people mentioned that they found the PS
long: 10 hours was the max mentioned time.
– "One credit of laboratory work can equal one to four hours per week." - UVA Registrar

http://www.virginia.edu/registrar/about.html

– "a 3 hour course requires about 10 hours/week for the entire semester." - UVA
Kinesiology http://records.uva.acalog.com/preview_program.php?catoid=11&poid=1052&bc=1

– "a ratio of 4 clock hours per credit hour per week." - UVA Clinical Nursing
http://www.nursing.virginia.edu/media/NEW%20Student%20Handbook%20CNL%2007-08.pdf

– "Total contact hours for a course should account for readings, online time, outside
preparation and study. Total contact hours required per credit hour are as follows: 135
hours for a 3-credit course [9 hours a week for 15 weeks]." - UVA Syllabus Template
http://www.faculty.virginia.edu/bbcp/documents/Final_Syllabus_Template.doc

#6

Time On Problem Sets: The Good
– “At least, personally, I could not have done this PS

without their help. Is that really what the
problem sets are supposed to be?”

• PS3 is one of the two hardest problem sets.
Remember, you are not expected to know or do it all.
– 86% of you had perfect coding scores on PS3. 89%

on PS2. You may be working too hard!

• PS Design: Open-Ended Grading, not Rote!
– Final problems allow us to distinguish between

superstars: currently you are all superstars!
– Example: Skipping 10-11 (convert-lcommands,

rewrite-lcommands) on PS3: 19/22
– Course curve: An “A” does not require perfect PS

#7

Tutoring and Hints
– “Is there any way to get one on one tutoring for

this type of problem set?”

• In the past, the ACM and ACM-W have offered
one-on-one tutoring. Send me (or the course
staff) email if you are interested; I will try to
set something up.
– “More hints written into PS if possible please? This

way I can work on it independently of TAs”

• I will add more hints on a optional links for PS4
on. On your honor!

#8

Writing The Code

– “I'd rather have maybe 4 or 5 comprehensive
questions where I wrote the entire snippet,
because I would get more chances to work off of
my own code.”

• Multiple people have this comment. Your wish
is granted. Check out PS4, where there is no
“fill in the blanks” code at all.
– “Also, 1 dropped problem set grade please!”

• More than zero have this comment. Vote?
– If so: drop lowest PS that is not the final project

and that you got at least three points on.

#9

Recall: Asymptotic Complexity

g is in O(f) iff: There are positive
constants c and n0 such that
g(n) ≤ cf(n) for all n ≥ n0.

g is in Ω(f) iff: There are positive
constants c and n0 such that
g(n) ≥ cf(n) for all n ≥ n0.

g is in Θ(f) iff: g is in O(f) and g is
in Ω(f).

#10

Is our sort good enough?
Takes over 1 second to sort
1000-length list. How long
would it take to sort 1 million
items?

1s = time to sort 1000
4s ~ time to sort 2000

1M is 1000 * 1000

Sorting time is n2

so, sorting 1000 times as many items will take
10002 times as long = 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.
It would take 20,000 years to process a VISA transaction at this rate.

#11

Which of these is true?

• Our sort procedure is too slow for VISA
because its running time is in O(n2)

• Our sort procedure is too slow for VISA
because its running time is in Ω(n2)

• Our sort procedure is too slow for VISA
because its running time is in Θ(n2)

#12

Which of these is true?

• Our sort procedure is too slow for VISA
because its running time is in O(n2)

• Our sort procedure is too slow for VISA
because its running time is in Ω(n2)

• Our sort procedure is too slow for VISA
because its running time is in Θ(n2)

Knowing a running time is in O(f) tells you the running time is not worse
than f. This can only be good news. It doesn’t tell you anything about
how bad it is. (Lots of people and books get this wrong.)

#13

Liberal Arts Trivia: Art History
• Name the work shown

and its sculptor. The
artist is generally
considered the
progenitor of modern
sculpture: he departed
from mythology and
allegory and modeled the
human body with
realism, celebrating
individual character and
physicality. #14

Liberal Arts Trivia: Chinese History
• This period of Chinese history roughly

corresponds to the Eastern Zhou dynasty (8th
century BCE to 5th century BCE). China was
feudalistic, with Zhou kings controlling only
the capital (Luoyang) and granting the rest as
fiefdoms to several hundred nobles (including
the Twelve Princes). As the era unfolded,
powerful states annexed smaller ones until a
few large principalities controlled China. By 6th
century BCE, the feudal system had crumbled
and the Warring States period had begun.

#15

Sorting Cost
(define (best-first-sort lst cf)
 (if (null? lst) lst
 (let ((best (find-best lst cf)))
 (cons best (best-first-sort (delete lst best) cf)))))
(define (find-best lst cf)
 (if (null? (cdr lst)) (car lst)

 (pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n2) where n
is the number of elements in the input list.

Assuming the comparison function
passed as cf has constant running time.

#16

Divide and Conquer sorting?

• Best first sort: find the lowest in the list,
add it to the front of the result of sorting
the list after deleting the lowest.

• Insertion sort: insert the first element of
the list in the right place in the sorted rest
of the list.
– Let's write this together!
– Hint: use/write helper function insert-one
– (insert-one 2 (list 1 3 4 5)) --> (1 2 3 4 5)

#17

insert-sort

(define (insert-sort lst cf)
 (if (null? lst) null
 (insert-one (car lst)
 (insert-sort (cdr lst) cf) cf)))

Try writing insert-one.

(define (insert-one element lst cf) ...)

(insert-one 2 (list 1 3 5) <) --> (1 2 3 5)

#18

insert-one
(define (insert-one el lst cf)
 (if (null? lst) (list el)
 (if (cf el (car lst)) (cons el lst)
 (cons (car lst)
 (insert-one el (cdr lst) cf)))))

#19

How much work is insert-sort?

How many times does insert-
sort evaluate insert-one?

(define (insert-sort lst cf)
 (if (null? lst) null
 (insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
 (if (null? lst) (list el)
 (if (cf el (car lst)) (cons el lst)
 (cons (car lst) (insert-one el (cdr lst) cf)))))

#20

How much work is insert-sort?

running time of insert-
one is ?

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

(define (insert-sort lst cf)
 (if (null? lst) null
 (insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
 (if (null? lst) (list el)
 (if (cf el (car lst)) (cons el lst)
 (cons (car lst) (insert-one el (cdr lst) cf)))))

#21

How much work is insert-sort?

running time of insert-
one is in Θ(n)

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

(define (insert-sort lst cf)
 (if (null? lst) null
 (insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
 (if (null? lst) (list el)
 (if (cf el (car lst)) (cons el lst)
 (cons (car lst) (insert-one el (cdr lst) cf)))))

#22

How much work is insert-sort?

running time of insert-
one is in Θ(n)

How many times does insert-
sort evaluate insert-one?

n times (once for each element)

insert-sort has running time in Θ(n2) where n is the
number of elements in the input list

(define (insert-sort lst cf)
 (if (null? lst) null
 (insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
 (if (null? lst) (list el)
 (if (cf el (car lst)) (cons el lst)
 (cons (car lst) (insert-one el (cdr lst) cf)))))

#23

Which is better?

• Is insert-sort faster than best-first-sort?

> (insert-sort < (revintsto 20))
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Requires 190 applications of <

> (insert-sort < (intsto 20))
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Requires 19 applications of <

> (insert-sort < (rand-int-list 20))
(0 11 16 19 23 26 31 32 32 34 42 45 53 63 64 81 82 84 84 92)

Requires 104 applications of <

> (best-first-sort < (intsto 20))

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
Requires 210 applications of <

> (best-first-sort < (rand-int-list 20))

(4 4 16 18 19 20 23 32 36 51 53 59 67 69 73 75 82 82 88
89)

Requires 210 applications of <

best-first-sort vs. insert-sort

• Both are Θ(n2) worst case (reverse list)

• Both are Θ(n2) when sorting a
randomly ordered list
– But insert-sort is about twice as fast

• insert-sort is Θ(n) best case (ordered
input list)

Can we do better?

(insert-one < 88
 (list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures
(first-half lst)
(second-half lst)

that quickly divided the list in two halves?

#28

quicker-insert using halves

(define (quicker-insert el lst cf)
 (if (null? lst) (list el) ;; just like insert-one
 (if (null? (cdr lst))
 (if (cf el (car lst)) (cons el lst) (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

#29

Evaluating quicker-sort
> (quicker-insert < 3 (list 1 2 4 5 7))
|(quicker-insert #<procedure:traced-<> 3 (1 2 4 5 7))
| (< 3 1)
| #f
| (< 3 5)
| #t
| (quicker-insert #<procedure:traced-<> 3 (1 2 4))
| |(< 3 1)
| |#f
| |(< 3 4)
| |#t
| |(quicker-insert #<procedure:traced-<> 3 (1 2))
| | (< 3 1)
| | #f
| | (< 3 2)
| | #f
| | (quicker-insert #<procedure:traced-<> 3 (2))
| | |(< 3 2)
| | |#f
| | (2 3)
| |(1 2 3)
| (1 2 3 4)
|(1 2 3 4 5 7)
(1 2 3 4 5 7)

Every time we call quicker-
insert, the length of the list is
approximately halved!

(define (quicker-insert el lst cf)
 (if (null? lst) (list el)
 (if (null? (cdr lst))
 (if (cf el (car lst))
 (cons el lst)
 (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

#30

How much work is quicker-sort?

Each time we call
quicker-insert, the size of
lst halves. So doubling
the size of the list only
increases the number of
calls by 1.

List Size # quicker-insert applications
1 1
2 2
4 3
8 4
16 5

(define (quicker-insert el lst cf)
 (if (null? lst) (list el)
 (if (null? (cdr lst))
 (if (cf el (car lst))
 (cons el lst)
 (list (car lst) el))
 (let ((front (first-half lst))
 (back (second-half lst)))
 (if (cf el (car back))
 (append (quicker-insert el front cf) back)
 (append front
 (quicker-insert el back cf)))))))

#31

Homework

• Problem Set 4
• Read Chapter 8
• Exam 1 Out Soon

