
Cost of SortsCost of Sorts
andand

Asymptotic Asymptotic
GrowthGrowth

(and addition!)(and addition!)

#2

One-Slide Summary

• g is in O(f) iff there exist positive constants c
and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

• If g is in O(f) we say that f is an upper bound
for g.

• We use Omega Ω for lower bounds and Theta
Θ for tight bounds.

• To prove that g is in O(f) you must find the
constants c and n0.

• We can add two numbers with electricity.

#3

Outline

• Sorting: timing and costs
• Big Oh: upper bound
• Big Omega: lower bound
• Big Theta: tight bound

• Time Permitting:
• Adding Two Numbers With Electricity

#4

Administrivia

• Don't forget to turn in your fractal
– Separate form and button on server

• Late policy for PS3 Code
– about 10% per full day

• Straw Poll
– We are thinking of moving the OLS 001 Labs on

Sunday October 17th to Saturday October 16th.
(Once only.) That's a football game weekend.
Would you be able to attend?

#5

Sorting Cost
• What grows?

– n = the number of elements in lst

• How much work are the pieces?
find-best: work scales as n (increases by one)
delete: work scales as n (increases by one)

• How many times does sort evaluate
find-best and delete? n

• Total cost: scales as n2

Recall “simple
sorting”: Find best

card, take it out and
set it aside, repeat.

#6

Timing Sort
> (time (sort < (revintsto 100)))
cpu time: 20 real time: 20 gc time: 0
> (time (sort < (revintsto 200)))
cpu time: 80 real time: 80 gc time: 0
> (time (sort < (revintsto 400)))
cpu time: 311 real time: 311 gc time: 0
> (time (sort < (revintsto 800)))
cpu time: 1362 real time: 1362 gc time: 0
> (time (sort < (revintsto 1600)))
cpu time: 6650 real time: 6650 gc time: 0

Cherry Blossom
by Ji Hyun Lee, Wei Wang

#7

Timing Sort

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000

= n2/500

measured
times

#8

Sorting Cost

If we double the length of the list, the amount of
work approximately quadruples: there are twice as
many applications of find-best, and each one takes
twice as long!

(define (sort lst cf)
 (if (null? lst) lst
 (let ((best (find-best lst cf)))
 (cons best (sort (delete lst best) cf)))))
(define (find-best lst cf)
 (if (= 1 (length lst)) (car lst)

 (pick-better cf (car lst) (find-best (cdr lst) cf))))

#9

Growth Notations

• g ∈ O(f) (“Big-Oh”)
g grows no faster than f (f is upper bound)

• g ∈ Θ(f) (“Theta”)
g grows as fast as f (f is tight bound)

• g ∈ Ω(f) (“Omega”)
g grows no slower than f (f is lower bound)

Which one would we most like to know?

#10

 O Examples

Is n in O (n2)? Yes, c = 1 and n0=1 works.

Is 10n in O (n)? Yes, c = 10 and n0=1 works.

Is n2 in O (n)? No, no matter what c we pick,
cn2 > n for big enough n (n > c)

g is in O(f) iff there are positive constants
c and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

#11

Ω (“Omega”): Lower Bound

g is in Ω (f) iff there are positive
constants c and n0 such that

for all n ≥ n0.

g is in O (f) iff there are positive constants
c and n0 such that g(n) ≤ cf(n) for all n ≥ n0.

g(n) ≥ cf(n)

#12

Proof Techniques

• Theorem:
There exists a polygon with four sides.

• Proof:
It is a polygon.
It has four sides.
QED.

What kind of proof is this?

#13

Proof by Construction

• We can prove a “there exists an X with
property Y” theorem, but showing an X that
has property Y

• O(f) means “there are positive constants c
and n0 such that g(n) ≤ cf(n) for all n ≥ n0

• So, to prove g is in O(f) we need to find c and
n0 and show that g(n) ≤ cf(n) for all n ≥ n0

#14

Dis-Proof by Construction

• To prove g is not in O(f):
• O(f) means: there are positive constants c

and n0 such that g(n) ≤ cf(n) for all n ≥ n0

• So, to prove g is not in O(f) we need to
find a way given any c and n0, to find an n

≥ n0 such that g(n) > cf(n).

Curious why :9c.9n
0
.P(c,n

0
) = 8c.8n

0
.:P(c,n

0
) ?

Discrete math!

#15

Growth Notations

• g ∈ O(f) (“Big-Oh”)
g grows no faster than f (upper bound)

• g ∈ Θ(f) (“Theta”)
g grows as fast as f (tight bound)

• g ∈ Ω(f) (“Omega”)
g grows no slower than f (lower bound)

#16

Liberal Arts Trivia: Archaeology

• In archaeology, this term is used to describe
the exposure, processing and recording of
archaeological remains. A related subconcept
is stratification: relationships exist between
different events in the same location or
context. According to the Law of
Superposition, sedimentary layers are
deposited in a time sequence, with the oldest
on the bottom and the youngest on top. The
process for revealing them is this.

#17

Liberal Arts Trivia:
Creative Writing

• This technique is one of the four rhetorical
modes of discourse, along with argumentation,
description and narration. Its purpose is to
inform, explain, analyze or define. When done
poorly, it is sometimes referred to as a
“information dump” or “plot dump”.

#18

The Sets O(f) and Ω(f)

f

O(f)
Functions
that grow
no faster
than f

Ω(f) Functions
that grow
no slower
than f

Increasingly fast growing functions

#19

O and Ω
Examples

• n is in Ω(n)

– ?

• 10n is in Ω(n)

– ?
• Is n2 in Ω(n)?

– ?

• n is in O(n)
– ?

• 10n is in O(n)
– ?

• n2 is not in O(n)
– ?

g is in O (f) iff there are positive
constants c and n0 such that g(n)
≤ cf(n) for all n ≥ n0.

g is in Ω (f) iff there are positive
constants c and n0 such that g(n)
≥ cf(n) for all n ≥ n0.

#20

O and Ω
Examples

• n is in Ω(n)

– Yes, pick c = 1

• 10n is in Ω(n)

– Yes, pick c = 1
• Is n2 in Ω(n)?

– Yes! (pick c = 1)

• n is in O(n)
– Yes, pick c = 1

• 10n is in O(n)
– Yes, pick c = 10

• n2 is not in O(n)
– Pick n > c

g is in O (f) iff there are positive
constants c and n0 such that g(n)
≤ cf(n) for all n ≥ n0.

g is in Ω (f) iff there are positive
constants c and n0 such that g(n)
≥ cf(n) for all n ≥ n0.

#21

Example

• Is n in Ω(n2)?

g is in Ω (f) iff there are positive
constants c and n0 such that g(n)
≥ cf(n) for all n ≥ n0.

n ≥ cn2 for all n ≥ n0

1 ≥ cn for all n ≥ n0

No matter what c is, I can make this false by using
n = (1/c + 1)

Θ (“Theta”): Tight Bound

g is Θ(f) iff
 g is in O (f)

and g is in Ω(f)

The Sets O(f), Ω(f), and Θ(f)

f

O(f)
Functions
that grow
no faster
than f

Ω(f) Functions
that grow
no slower
than f

Θ(f)

How big are O(f), Ω(f), and Θ(f)?

Increasingly fast growing functions

Θ Examples

•Is 10n in Θ(n)?
•Is n2 in Θ(n)?
•Is n in Θ(n2)?

Θ Examples
• Is 10n in Θ(n)?

– Yes, since 10n is Ω(n) and 10n is in O(n)
•Doesn’t matter that you choose different c

values for each part; they are independent
• Is n2 in Θ(n)?

– No, since n2 is not in O(n)
• Is n in Θ(n2)?

– No, since n2 is not in Ω(n)

Recall: Sorting Cost

• What grows?
– n = the number of elements in lst

• How much work are the pieces?
find-best: work scales as n (increases by one)
delete: work scales as n (increases by one)

• How many times does sort evaluate
find-best and delete? n

• Total cost: scales as n2

Sorting Cost

If we double the length of the list, the amount of work
approximately quadruples: there are twice as many applications
of find-best, and each one takes twice as long.

(define (sort lst cf)
 (if (null? lst) lst
 (let ((best (find-best lst cf)))
 (cons best (sort (delete lst best) cf)))))
(define (find-best lst cf)
 (if (= 1 (length lst)) (car lst)

 (pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of this sort procedure is in Θ(n2)

Timing Sort

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000

= n2/500

measured
times

Θ(n2)

Is our sort good enough?
Takes over 1 second to sort
1000-length list. How long
would it take to sort 1 million
items?

1s = time to sort 1000
4s ~ time to sort 2000

1M is 1000 * 1000

Sorting time is n2

so, sorting 1000 times as many items will take
10002 times as long = 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.
It would take 20,000 years to process a VISA transaction at this rate.

Eyes
by John Devor

and Eric Montgomery

Which of these is true?

• Our sort procedure is too
slow for VISA because its
running time is in O(n2)

• Our sort procedure is too
slow for VISA because its
running time is in Ω(n2)

• Our sort procedure is too
slow for VISA because its
running time is in Θ(n2)

Which of these is true?

• Our sort procedure is too slow for VISA
because its running time is in O(n2)

• Our sort procedure is too slow for VISA
because its running time is in Ω(n2)

• Our sort procedure is too slow for VISA
because its running time is in Θ(n2)

Knowing a running time is in O(f) tells you the running time is not worse
than f. This can only be good news. It doesn’t tell you anything about
how bad it is. (Lots of people and books get this wrong.)

Liberal Arts Trivia: Dance

• This four wall line dance was created in 1976
by American dancer Ric Silver. It was
popularized by Marcia Griffiths and remains a
perennial wedding favorite. Steps: 1-4
grapevine right (tap and clap on 4), 5-8
grapevine left (tap and clap on 8), 9-12 walk
back (tap and clap on 12), etc. The lyrics
include “I'll teach you the ...”

Liberal Arts Trivia:
Popular Mechanics

• This part of a bicycle holds the front wheel
and allows the rider to steer and balance the
bicycle. It consists of two dropouts which hold
the front wheel axle, two blades which join at
the crown, and a streering tube to which the
handlebars attach via a stem.

Liberal Arts Trivia:
Medieval Studies

• This son of Pippin the Short was King of the
Franks from 768 to his death and is known as
the “father of Europe”: his empire united most
of Western Europe for the first time since the
Romans. His rule is associated with the
Carolingian Renaissance, a revival of art,
religion and culture. The word for king in
various Slavic languages (e.g., Russian, Plish,
Czech) was coined after his name.

#35

How To Add Two Numbers
With Electricity

1

2
3Magic?

#36

How To Add Two Numbers
With Electricity

1

2
3Magic?

Step 1. Pick a representation.
We'll use wires carrying electricity.
Each wire will either be on or off.
Each wire will thus encode one bit.
We'll represent our numbers in binary.

#37

How To Add Two Numbers
With Electricity

01

10

11
Magic?

Step 1. Pick a representation.
We'll use wires carrying electricity.
Each wire will either be on or off.
Each wire will thus encode one bit.
We'll represent our numbers in binary.

#38

How To Add Two Numbers
With Electricity

01

10

11
Magic?

Step 1. Pick a representation.
We'll use wires carrying electricity.
Each wire will either be on or off.
Each wire will thus encode one bit.
We'll represent our numbers in binary.

#39

Still Adding Numbers

• What does it mean for a wire to be “on”?
– We'll use voltage.
– Ex: bit 0 is 0V to 0.8V and bit 1 is 2V to 5V

• Great. So how do I combine and
manipulate voltages?
– Example: 0+0 = 0
– Example: 0+1 = 1
– Example: 1+0 = 1
– Somehow I need the output to be “on” if

either of the inputs is “on”. How do I do it?
#40

The Transistor

• A transistor is a device used to amplify or
switch electronic signals.

• A transistor used as a switch has three
connections to the outside world:
– source
– control
– output

• If the control is “on”, the source flows to the
output. Otherwise, the output is “off”.
– A transistor is like a faucet.

control

source

output

#41

The Transistor Continued
• A transistor is made of a solid piece of

semiconductor material.
• A semiconductor is a material that has

electrical conductivity that varies dynamically
between that of a conductor (on) or an
insulator (off). Silicon is a semiconductor.

#42

The Transistor

• With transistors it is possible to make two
switches: normal control, and inverted control.
– The black dot means inverted.

• Exhaustive Listing:
S C O S C O
1 1 1 1 1 0
1 0 0 1 0 1
0 1 0 0 1 0
0 0 0 0 0 0

control

source

output

control

source

output

What logical operation is this?

#43

The Notty Transistor

• One Trick: what if we wire the source of an
inverted control switch up to a battery that is
always on?

• Exhaustive Listing:
C O

 1 0
 0 1 control

battery
(always 1)

output
What logical operation is this?

#44

Boolean Logic

• So we have (and X Y) and (not X) for bits.
• Also (or X Y) = (not (and (not X) (not Y)))
• Also (xor X Y) = (and (or x y) (not (and x y)))
• An electronic circuit that operates on bits and

implements basic boolean logic is called a
gate.

• So far we have and, or, xor and not gates.
• That's all we need to add numbers!

#45

Adding Numbers!

• 1 + 0 + 1 = 10

0
1

1

?

?
XOR

XOR

AND

AND

OR

#46

Adding Numbers!

• 1 + 0 + 1 = 10

0
1

1

?

?
XOR

XOR

AND

AND

OR

#47

Adding Numbers!

• 1 + 0 + 1 = 10

0
1

1

?

?
XOR

XOR

AND

AND

OR

#48

Adding Numbers!

• 1 + 0 + 1 = 10

0
1

1

?

?
XOR

XOR

AND

AND

OR

#49

Adding Numbers!

• 1 + 0 + 1 = 10

0
1

1

1

0
XOR

XOR

AND

AND

OR

#50

Electronic Computers
• By using semiconductors

– which work using physical properties of silicon

• We can build transistors
– which are like switches or faucets

• To manipulate electrical voltages
– which represent bits

• Through logical gates
– which encode and, or, not, etc.

• To add (and subtract, etc.) numbers!
– In O(1) time. This is the basis of our cost model.

#51

Homework

• Read Couse Book Chp 7
– You've already done so!

• Problem Set 3 Due
• Problem Set 4 Out

– Start now!
– Due Very Soon
– It's for Exam Prep! The Mask

by Zachary Pruckowski,
Kristen Henderson

