

Costs and Sneezewort and Growth

532. *Achillea Ptarmica L.*
Sneezewort

One-Slide Summary

- The basic recursive computation of Fibonacci can take quite a while. **There are faster ways.**
- We can formally measure and evaluate the cost of a computer program. We abstract away details such as processor speed and instead measure how **the solving time increases as the input increases.**
- g is in O(f)** iff there exist positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.
- If g is in $O(f)$ we say that f is an **upper bound** for g .

#3

"V" shrubbery
by Andrew Jesien, Becky Elstad

Robot Cav Man
by Jamie Jeon & Walter Borges

After the Incident
by Ben Morrison and Liz Peterson

Breaking News

THE VOTE IS IN:
BARBIE® DOLL'S 126TH CAREER –
COMPUTER ENGINEER

You voted and we listened! Consumers around the world voted for Barbie® Doll's 126th career and we are pleased to announce that the 126th career will be Computer Engineer! The winning careers were announced at New York Toy Fair on February 12th.

Having Barbie® as an ambassador for female computer engineers can help inspire a new generation of girls to hone in on their computer skills and become a part of this growing profession. "Girls who discover their futures through Barbie will learn that they – just like engineers – are free to explore infinite possibilities, and that their dreams can go as far as their imaginations take them," said Dr. Lin, President, Society of Women Engineers. "We are excited that Barbie is a role model that can design products that have an important and positive impact on people's everyday lives, such as inventing a technology to conserve home energy, or programming a new worm monitoring device."

To ensure the doll accurately reflects this occupation, Barbie® designers worked with the Society of Women Engineers and the National Academy of Engineering to make sure the clothing and packaging were realistic and representative of a real computer engineer. Looking good, Inc., Computer Engineer Barbie® features a t-shirt featuring binary code and computer keyboard icon along with a pair of black knee skinny pants. Computer Engineer carries a Barbie® smart phone, features a pink and white color scheme, and includes accessories. With stylish pink-frame glasses and a shiny laptop, she is ready to conquer the day's tasks on the go or from her desk.

For girls to further experience the reality of being a computer engineer, the doll also includes a special code to unlock exclusive online game content on Barbie.com. Computer Engineer Barbie is now available for pre-order at www.BarbieShop.com and will be available at retailers nationwide in Winter 2013.

Please visit www.BarbieMedia.com for more information and images.

Media Contact:

Barbie is another wonderful way of introducing girls to engineering, a profession that includes computer engineers and many others all working together on the world's most important challenges. The National Academy of Engineering shares their passion for portraying engineering as a "cool" and creative career path, because that realization both opens doors for girls individually and is vital to tapping a rich diversity of ideas that will lead us all into the future.

– Randy Atkins,
National Academy of Engineering

Outline

- Sneezewort and Fibonacci
- Cost of computing Fibonacci
- Cost of sorting
- Intro to Big-Oh Notation

Sneezewort

- Achillea ptarmica is real.
- It is "moste efficacious in the inflaming of the braine, and [is] therefore much used in Confusing and Befuddlement Draughts, where the wizard is desirous of producing hot-headedness and recklessness."
- Order of the Phoenix, p.18
- Sneezewort's pattern of development displays the Fibonacci sequence.

#5

#6

Sneezewort Growth

Could we model Sneezewort with PS3 code?

#7

Fibo Results

```
> (fibo 2)
1
> (fibo 3)
2
> (fibo 4)
3
> (fibo 10)
55
> (fibo 60)
Still working...
```


At least we finished.
by Dmitriy Semenov and Sara Alspaugh

#9

Sneezewort Numbers

by Jessica Geist, Ellen Clarke

pink

#7

Tracing Fibo

```
> (require-library "trace.ss")
> (trace fibo)
(fibo)
> (fibo 3)
|(fibo 3)
|  (fibo 2)
|  1
|  (fibo 1)
|  1
| 2
2
```


Purple Arrow
by Rachel Lathbury and Andrea Yoon

See end of Class 5 lecture notes for information on “trace ss”!

#10

```
> (fib0 5)
|(fib0 5)
| (fib0 4)
| |(fib0 3)
| | (fib0 2)
| | 1
| | (fib0 1)
| | 1
| | 2
| | (fib0 2)
| | 1
| | 3
| | (fib0 3)
| | (fib0 2)
| | 1
| | (fib0 1)
| | 1
| | 2
| | 5
| | 5
```

A right-wing Christmas - awwwww.....
by Andrew Baker & Emily Lam

by Andrew Baker & Emily I am

To calculate (fib 5) we calculated:
 (fib 4) 1 time
 (fib 3) 2 times
 (fib 2) 3 times
 (fib 1) 2 times } 5 times total
 = 8 calls to fibo = (fib 6)

How many calls to calculate (fib 60)?

#9

Liberal Arts Trivia: History

- This 20th-century American inventor is credited with the phonograph, the carbon telephone transmitter, the practical electric light, and the phrase “Genius is one percent inspiration, ninety-nine percent perspiration.” He fought against Nikola Tesla’s alternating current in the so-called War of the Currents.

Liberal Arts Trivia: Film Studies

- In this Oscar-nominated 2006 film, David Bowie is almost torched by Thomas Edison's goons but invents a teleportation machine for Wolverine so that he can defeat Batman in a magic trick competition because he thinks Batman killed his wife.

Liberal Arts Trivia: Physics

- Count Alessandro Antonio Anastasio Volta was a 19th-century Italian physicist. Volta studied what we now call capacitance, developing separate means to study both electrical potential V and charge Q , and discovering that for a given object they are proportional. His experiments in "animal electricity", in which two different metals were connected in series with frog's legs, eventually led to his most famous discovery. What was it?

#14

fast-fibo

```
(define (fast-fibo n)
  (define (fib-helper a b left)
    (if (<= left 0)
        b
        (fib-helper b (+ a b) (- left 1))))
  (fib-helper 1 1 (- n 2)))
```

#15

```
;;: The Earth's mass is 6.0 x 10^24 kg
> (define mass-of-earth (* 6 (expt 10 24)))
;;: A typical rabbit's mass is 2.5 kilograms
> (define mass-of-rabbit 2.5)
> (/ (* mass-of-rabbit (fast-fibo 60)) mass-of-earth)
6.450036483e-013
> (/ (* mass-of-rabbit (fast-fibo 120)) mass-of-earth)
2.2326496895795693
```

According to Bonacci's model, after less than 10 years, rabbits would out-weigh the Earth!

#16

```
;;: The Earth's mass is 6.0 x 10^24 kg
> (define mass-of-earth (* 6 (expt 10 24)))
;;: A typical rabbit's mass is 2.5 kilograms
> (define mass-of-rabbit 2.5)
> (/ (* mass-of-rabbit (fast-fibo 60)) mass-of-earth)
6.450036483e-013
> (/ (* mass-of-rabbit (fast-fibo 120)) mass-of-earth)
2.2326496895795693
```

According to Bonacci's model, after less than 10 years, rabbits would out-weigh the Earth!

#17

Beware the
Bunnies!!
Beware the
Sneezewort!!

#18

Evaluation Cost

Actual running times vary according to:

- How fast a processor you have
- How much memory you have
- Where data is located in memory
- How hot it is
- What else is running
- etc...

Moore's "Law" – computing power doubles every 18 months

Measuring Cost

- How does the cost scale with the *size of the input*?
- If the input size increases by one, how much longer will it take?
- If the input size *doubles*, how much longer will it take?

#21

Cost of Fibonacci Procedures

```
(define (fib0 n)
  (if (or (= n 1) (= n 2))
      1 ;;; base case
      (+ (fib0 (- n 1))
          (fib0 (- n 2)))))

(define (fast-fibo n)
  (define (fib-helper a b left)
    (if (= left 0)
        b
        (fib-helper b (+ a b) (- left 1)))))

(fib-helper 1 1 (- n 2)))
```

Input	fib0	fast-fibo
m	q	mk
$m+1$		$(m+1)k$
$m+2$	at least q^2	$(m+2)k$

#21

#22

Cost of Fibonacci Procedures

```
(define (fib0 n)
  (if (or (= n 1) (= n 2))
      1 ;;; base case
      (+ (fib0 (- n 1))
          (fib0 (- n 2)))))

(define (fast-fibo n)
  (define (fib-helper a b left)
    (if (= left 0)
        b
        (fib-helper b (+ a b) (- left 1)))))

(fib-helper 1 1 (- n 2)))
```

Input	fib0	fast-fibo
m	q	mk
$m+1$	$q^* \Phi$	$(m+1)k$
$m+2$	at least q^2	$(m+2)k$

$$\Phi = \left(\frac{1 + \sqrt{5}}{2} \right) = \text{"The Golden Ratio"} \approx 1.618033988749895 \dots$$

$$\sim \left(\frac{1}{\text{fast-fibo } 61} \right) \left(\text{fast-fibo } 60 \right) = 1.618033988749895$$

#23

The Golden Ratio

Parthenon

Nautilus Shell

#24

More Golden Ratios

<http://www.fenkefeng.org/essaysm18004.html>
by Oleksiy Stakhov

#25

PS2 Question

```
(define (find-best-hand hands)
  (car (sort hands higher-hand?)))
```

```
(define (find-best lst cf)
  (if (= 1 (length lst)) (car lst)
      (pick-better cf (car lst) (find-best (cdr lst) cf))))
(define (pick-better cf num1 num2)
  (if (cf num1 num2) num1 num2))
(define (find-best-hand hands)
  (find-best hands higher-hand?))
```

Which is better and by how much?

#26

Simple Sorting

- Can we use find-best to implement sort?
 - Yes!
- Use (find-best lst) to find the best
- Remove it from the list
 - Adding it to the answer
- Repeat until the list is empty

by Victor Malarek, Folami Williams

#27

Simple Sort

; cf = comparison function

```
(define (sort lst cf) ; simple sort
  (if (null? lst) lst
      (let ((best (find-best lst cf)))
        (cons
          best
          (sort (delete lst best) cf)))))

;; delete lst x = (filter ... (not (eq? x ...
```

#28

Sorting Hands

```
(define (sort lst cf)
  (if (null? lst) lst
      (let ((best (find-best lst cf)))
        (cons
          best
          (sort (delete lst best) cf)))))

(define (sort-hands lst)
  (sort lst higher-hand?))
```

#29

Sorting

```
(define (sort lst cf)
  (if (null? lst) lst
      (let ((best (find-best lst cf)))
        (cons best (sort (delete lst best) cf)))))

(define (find-best lst cf)
  (if (= 1 (length lst)) (car lst)
      (pick-better cf (car lst) (find-best (cdr lst) cf))))
(define (pick-better cf num1 num2)
  (if (cf num1 num2) num1 num2))
```

How much work is sort?

#30

Sorting Cost

- What grows?
 - n = the number of elements in lst
- How much work are the pieces?
 - find-best:
 - delete:

#31

Sorting Cost

- What grows?
 - n = the number of elements in lst
- How much work are the pieces?
 - find-best: work scales as n (increases by one)
 - delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete?

#32

Sorting Cost

- What grows?
 - n = the number of elements in lst
- How much work are the pieces?
 - find-best: work scales as n (increases by one)
 - delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as

#33

Sorting Cost

- What grows?
 - n = the number of elements in lst
- How much work are the pieces?
 - find-best: work scales as n (increases by one)
 - delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as n^2

#34

Sorting Cost

```
(define (sort lst cf)
  (if (null? lst) lst
      (let ((best (find-best lst cf)))
        (cons best (sort (delete lst best) cf)))))

(define (find-best lst cf)
  (if (= 1 (length lst)) (car lst)
      (pick-better cf (car lst) (find-best (cdr lst) cf))))
```

If we **double** the length of the list, the amount of work **approximately quadruples**: there are twice as many applications of find-best, and each one takes twice as long

#35

Liberal Arts Trivia: Medicine

- Nicolae Paulescu was a 20th century physiologist and professor of medicine. He is considered the true discoverer of hormone that causes most of the body's cells to take up glucose from the blood. His first experiments involved an aqueous pancreatic extract which, when injected into a diabetic dog, proved to have a normalizing effect on blood sugar levels. Name the hormone.

#36

Liberal Arts Trivia: Sailing

- Name the collection of apparatus through which the force of the wind is transferred to the ship in order to propel it forward - this includes the masts, yardarms, sails, spars and cordage.

Timing Sort

```

> (time (sort < (revintsto 100)))
cpu time: 20 real time: 20 gc time: 0
> (time (sort < (revintsto 200)))
cpu time: 80 real time: 80 gc time: 0
> (time (sort < (revintsto 400)))
cpu time: 311 real time: 311 gc time: 0
> (time (sort < (revintsto 800)))
cpu time: 1362 real time: 1362 gc time: 0
> (time (sort < (revintsto 1600)))
cpu time: 6650 real time: 6650 gc time: 0

```


Cherry Blossom
by Ji Hyun Lee, Wei Wang

#38

Timing Sort

#39

Growth Notations

- $g \in O(f)$ (“Big-Oh”) g grows no faster than f (f is upper bound)
- $g \in \Theta(f)$ (“Theta”) g grows as fast as f (f is tight bound)
- $g \in \Omega(f)$ (“Omega”) g grows no slower than f (f is lower bound)

Which one would we most like to know?

#40

Meaning of O (“big Oh”)

g is in $O(f)$ iff:

There are positive constants c and n_0 such that

$$g(n) \leq cf(n)$$

for all $n \geq n_0$.

O Examples

g is in $O(f)$ iff there are positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.

Is n in $O(n^2)$?

Is $10n$ in $O(n)$?

Is n^2 in $O(n)$?

#41

O Examples

g is in $O(f)$ iff there are positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.

Is n in $O(n^2)$? Yes, $c = 1$ and $n_0 = 1$ works.

Is $10n$ in $O(n)$? Yes, $c = 1/10$ and $n_0 = 1$ works.

Is n^2 in $O(n)$? No, no matter what c we pick, $cn^2 > n$ for big enough n ($n > c$)

#43

Revenge of O Examples

g is in $O(f)$ iff there are positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.

Is $n+5$ in $O(n^2)$?

Is n^2-100 in $O(n)$?

Is n^2 in $O(n^3)$?

#44

Revenge of O Examples

g is in $O(f)$ iff there are positive constants c and n_0 such that $g(n) \leq cf(n)$ for all $n \geq n_0$.

Is $n+5$ in $O(n^2)$? Yes, $c = 1$ and $n_0 = 3$ works.

Is n^2-100 in $O(n)$? No, no matter what c we pick, $cn^2-100 > n$ for big enough n .

Is n^2 in $O(n^3)$? Yes, $c = 1$ and $n_0 = 1$ works.

Yes, $c = 2$ and $n_0 = 77$ works.

Yes, $c = 55$ and $n_0 = 102$ works.

#45

Homework

- Read Course Book Chapter 7 before Wednesday
 - Has a formal notation for this kind of analysis!
- Problem Set 3 due!

The Mask
by Zachary Pruckowski,
Kristen Henderson

#46