FROM THE MAKERS OF THE BLOGOSPHERE,
BLoGo CUBE, AND BLOGODROME COMES

the 3 /oﬁofracz‘a/

ripMaster Monkew S0ys [

°Lc = -ﬁqtyfl’Say on Kos ﬂ!dg
)

One-Slide Summary

18+ Poat 1|2 . . oy)
L-System e ?]5523 SI0t, Tohiot o Joil 3 Recursive transition networks and Backus-Naur Form
TCora Dbctare s It upseF Ghouf CoparaH Tous. context-free grammars are equivalent formalisms for
Fractals = QZFZT;}ZQKTS”?; &ggoi specifying formal languages.
& e S OURR LR | oo . . 5
& € |£133] Comments (0) Q:’%E s find-closest is quite powerful. Problem sets?
é‘ Check oot his vid ofI"Smﬁ\- e M QT%; » L-system fractals are based on a rewriting system that
Procedure S | E ™ot wherat > oesT BEL Bl 2l3 2 is very similar to BNF grammars.
. S [EmnTEmes e Y| ti CS knowled to this point t
Practice 5 BT Gl DIY b éﬁ"f“ﬂﬁ“”’ || * We can practice our CS knowledge up to this point to
@ B gt:fj;’::g“:“%““ 3130 M"“ s‘{? @l| solve problems by writing recursive procedures. (It
S L“qz,ﬂ";':q,’;,;j‘"“;:'g n ao%?? 53 10d won't take too long.)
== B o[58 Bl i eS| 2SR S
RIRIESEREE Nl |8 BHera | 2IS (75RS
A';'\) gé ;— g ?}g é T ;Suwgq;‘a‘[?xﬁ ‘é% :£§§
<.$’L 23 [Blogodrome 1 2| [ONF Relewed] H E:ZLE‘E?.;_[#
Outline Recursive Transition Networks
« Briefly: Recursive Transition Networks ORNATE NOUN
- vs. Backus-Naur Form Grammars
« Playing Poker N
- Revenge of find-closest @ ARTICLE ADJECTIVE | ———>| NOUN
A
» PS3 L-System Fractals e
« Solving Problems ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN
Problem R tati ADJECTIVES 1= ADJECTIVE ADJECTIVES
- Froblém kepresentation ADJECTIVES :=¢
- Important Functions OPTARTICLE ::= ARTICLE)
OPTARTICLE :=¢ Recall: ?he two notations
are equivalent.
#3 #4

Problem Sets

« Not just meant to review stuff you should

already know

- Get you to explore new ideas
- Motivate what is coming up in the class

« The main point of the PSs is learning, not

evaluation

- Don’t give up if you can’t find the answer in the
book (you won’t solve many problems this way)

- Do discuss with other students
- (This is why they are difficult.)

#5

PS2: Question 1

i. (list-length (list-append (list 1 2 3) 4))

> (list-append (list 1 2 3) 4)
(123.4);; thisis not a list!

> (list-length (list-append (list 1 2 3) 4))

length: expects argument of type <proper list>;
given (12 3. 4)

#6

PS2: Question 4

Why is
(define (higher-card? card1 card2)
(> (card-rank card1) (card-rank card2)
better than
(define (higher-card? card1 card2)
(> (car card1) (car card2))

#7

PS2: Question 8

8. How long is analyze-flop-situation?

(let ((current-deck (remove-cards (append hole1
hole2 community) full-deck)))
(map (lambda (turn-card)
(map (lambda (outs) (cons turn-card outs))
(analyze-turn-situation hole1 hole2 (cons turn-
card community)))) current-deck)))
- Current-deck is the initial deck of 52 cards with 7
already dealt, leaving 45.

- We call analyze-turn 45 times (slow!), each time

we putting the answer in a list (fast!), so 45x.
#8

PS2: Question 9, 10

 Predict how long it will take
« ldentify ways to make it faster

Most of next week and much of many later
classes will be focused on how computer
scientists predict how long programs will take,
and on how to make them faster.

#9

Can we do better?

This is what we used in PS2 for our Poker-Bot:

(define (find-best-hand hole-cards community-cards)
(car (sort (possible-hands hole-cards
community-cards))
higher-hand?))

But didn't we learn something in the last class
for finding the “closest” or “best” element in a list?
#10

Recall From Last Time

(define (find-closest goal Ist closeness)
(if (= 1 (length Ist))
(car Ist)
(pick-closest closeness goal (car Ist)
(find-closest goal (cdr Ist) closeness))))

(define (pick-closest closeness goal num1 num2)
(if (< (closeness goal num1)
(closeness goal num2))

num We could
use these
num2)) to find the

best hand!

#11

find-bestest

(define (find-bestiest Ist bestiness)
(if (= 1 (length Ist))
(car Ist)
(pick-bestier bestiness
(car Ist)
(find-bestiest (cdr Ist) bestiness))))

(define (pick-bestier bestiness num1 num2)
(if (bestiness num1 num2)
num1
numz2))

This used to be
(< (dist num1 goal)
(dist num2 goal))

#12

. Liberal Arts Trivia:
find-best-hand Latin American Studies

(define (find-bestiest Ist bestiness)

(if (= 1 (length Ist)) (car Ist) « This important leader of Spanish America's
(pick-bestier(best:niss successful struggle for independence is
car Ist

credited with decisively contributing to the

find-besti | i))
(find-bestiest (cdr lst) bestiness)))) independence of the present-day countries of

(define (pick-bestier bestiness num1 num2)

(if (bestiness num1 num2) num1 num2)) Venezuela, Colombia, Ecuador, Peru, Panama,
_ _ and Bolivia. He defeated the Spanish Monarchy
(define (find-best-hand Ist) and was in turn defeated by tuberculosis.

(find-bestest Ist higher-hand?))

Next week: how much better is this?
At home: convince yourself that they
get the same answer.

#13 #14

Liberal Arts Trivia: Media Studies
PS3:

e This 1988 book by Herman and Chomsky presented the seminal

“propaganda model”, arguing that as news media outlets are run L] nden mayer System FraCtalS
by corporations, they are under competitive pressure. Consider the
dependency of mass media news outlets upon major sources of — ==

news, particularly the government. If a particular outlet is in
disfavor with a government, it can be subtly 'shut out’, and other
outlets given preferential treatment. Since this results in a loss in
news leadership, it can also result in a loss of viewership. That can
itself result in a loss of advertising revenue, which is the primary
income for most of the mass media (newspapers, magazines,
television). To minimize the possibilities of lost revenue,
therefore, outlets will tend to report news in a tone more
favorable to government and business, and giving unfavorable news
about government and business less emphasis.

#15 #16

CommandSequence ::= (CommandList)

- CommandList ::= Command CommandList
L SyStemS L_System CommandList ::=

Command ::= F

CommandSequence ::= (CommandList) Rewriting command ::- Rangte
. . Command ::= 0CommandSequence
CommandList ::= Command CommandList
A Start: (F)
CommandList :: Rewrite Rule:
Command ::=F F - (F O(R30 F) F O(R-60 F) F)

Command ::= RAngle
Command ::= OCommandSequence

Work like BNF replacement rules,
except replace all instances at once!

Why is this a better model for biological systems?

#17 #18

TSI [2 C5 200 Fractals

Level O
Start: (F)

(F)

Level 1
F - (F O(R30 F) F O(R-60 F) F)
(F O(R30 F) F O(R-60 F) F)

ST

Level 2 Level 3

#20

The Great
Lambda Tree
of Ultimate
Knowledge
and Infinite
Power

(Level 5 with color)

#21

Previous CS 1120 Students:

Tie Dye by Bill Ingram

Rose Bush by Jacintha Henry and Rachel Kay

#22

Previous CS 1120 Students:

Tree Outside My Window

#23

PS3 - Fractals

« In addition to completing the problem set,
each time will submit their prettiest fractal.

» The class will then vote for favorites, and
the authors of the favorites will receive
extra credit.

» No Photoshop, etc. All PS3.
- You just change the rules:
F - (FO(R30F) F O(R-60 F) F) ;; one fractal
F - (O(R60 F) F F O(R45 F)) ;; a new one!

#24

Procedure Practice

« For the rest of this class, we will be practicing
writing recursive procedures together.

» Write a procedure count-fives that takes as
input a list of numbers. It returns the number
of fives contained in its input list.

- (count-fives (list 12 3 45)) -> 1
- (count-fives (list 5 -55 7)) -> 2
- (count-fives (list)) ->0
- (count-fives (list 86 75309)) -> 1

#25

Hints
» Remember our strategy!
 Be optimistic!
- Assume that you can write “count-fives”
- So the recursive case will work out
« |dentify the smallest input you can solve
- The base case
« How would you combine answers
- From the current call (usually the car of the list)
- And the result of the recursive call

 Be creative! There are usually many solutions.

#26

Two versions of count-fives

(define (count-fives Ist)
(if (null? (st)
0
(if (eq? (car lst) 5)
(+ 1 (count-fives (cdr Ist)))
(count-fives (cdr lst)))))

Both work fine!
How are they
different?

(define (count-fives Ist)
(if (null? lst) O
(+ (if (eq? (car lst) 5) 1 0)
(count-fives (cdr lst)))))

#27

Liberal Arts Trivia: Medicine

 This vector-borne infectious disease is caused
by protozoan parasites. It is widespread in
tropical regions, such as sub-Saharan African.
Each year there are about 515 million cases of
it, killing between one and three million
people. No formal vaccine is available. Classic
symptoms include sudden coldness followed by
rigor and then fever and sweating.

#28

Liberal Arts Trivia: Cognitive
Psychology

« This American psychologist coined the term
Cognitive Psychology in his late 1960's book of
the same name. He was critical of linear
programming models of psychology, felt that
psychology should address everyday concerns,
and respected the direct perception theories
of J.J. And Eleanor Gibson. He headed the APA
task force that reviewed The Bell Curve.

#29

Liberal Arts Trivia: Accounting

« In this bookkeeping system, each transaction is
recorded in at least two accounts. Each
transaction results in one account being
debited and another account being credited,
with the total debits equal to the total credits.
Luca Pacioli, a monk and collaborator of
Leonardo da Vinci, is called the “father of
accounting” because he published a usable,
detailed description of this system.

#30

contains

» Write a procedure contains? that takes two
arguments: an element and a list. It returns #t
if the list contains the given element, #f
otherwise.

- (contains? 5 (list 1 2 3 4)) -> #f
- (contains? 5 (list 2 3 4 5)) -> #t
- (contains? null (list 1 2 3)) -> #f
- (contains? 1 (list 2 null 1)) -> #t
- (contains? 3 (list)) -> #f

#31

contains explained

(define (contains? elt st)
(if (null? lst)
#f
(if (eq? elt (car lst))
#t
(contains? elt (cdr Ist)))))

Both work fine!
How are they
different?

(define (contains? elt lst)
(if null? lst) #f
(or (eq? elt (car lst))
(contains? elt (cdr Ist))))

#32

common-elt?

» Write a procedure common-elt? that takes two
lists as arguments. It returns #t if there is a
common element contained in both lists, #f
otherwise.

- (common-elt? (list 1 2 3) (list 34 5)) -> #t
- (common-elt? (list 1 2 3) (list 4 5 6)) -> #f
- (common-elt? (list 1 2) (list000 1)) -> #t
- (common-elt? (list 1) null) -> #f
- (common-elt? null (list 1 2 3)) -> #f
- (common-elt? (list 1) (list 1 2 3)) -> #t

e Hint: contains?

#33

common-elt?

(define (common-elt? lst1 lst2)
(if (null? st1) #f
(if (contains? (car lst1) lst2)
#t
(common-elt? (cdr (st1) lst2))))

(define (common-elt? lst1 lst2)
(if (or (null? lst1) (null? (st2)) #f

(or (eq? (car lst1) (car lst2)) HE:Itgrvew:IT;!y
(common-elt? lst1 (cdr lst2)) different?

(common-elt? (cdr Ist1) lst2)))))
;; this version is super slow!

#34

zero-to-hero

» Write a procedure zero-to-hero that takes as
input a list of strings. It returns the same list in
the same order, but every element that used
to be “zero” is now “hero”.

- (zero-to-hero (list “a” “zero” “b” “jercules”))
e (“a” “hero” “b” “jercules”)

- (zero-to-hero (list “zorro”))
* (“zorro”)

- (zero-to-hero (list “zero” “zero” “one
* (“hero” “hero” “one” “hero”)

Y Y«

zero”))

#35

zero-to-hero

(define (zero-to-hero lst) Both work!
: How are they
(if (null? Ist) null different?

(if (eq? (car lst) “zero”))
(cons “hero” (zero-to-hero (cdr lst)))
(cons (car Ist) (zero-to-hero (cdr lst))))))

(define (zero-to-hero lst)
(map (lambda (x)
(if (eq? x “zero”) “hero” x))
Ist)) ;; learn map if you haven't yet!
#36

tiny-squares

» Write a procedure tiny-squares that takes as
input a list of numbers. It returns a list of the
squares of those numbers (in the same order),
but any square above 100 is not included in the
output.

- (tiny-squares (list 89 10 11 12))
. (64 81 100)

- (tiny-squares (list -2 12 4 77 5))
. (416 25)

- (tiny-squares (list 3 2 1 100)
«(941)

#37

tiny-squares

(define (tiny-squares lst) Both work!
; ? How are they
(if (null? lst) null i

(if (<= (car lst) 10)
(cons (* (car lst) (car lst))
(tiny-squares (cdr Ist)))
(tiny-squares (cdr lst)))))

(define (tiny-squares lst)
(filter (lambda (squared) (<= squared 100))
(map (lambda (x) (* x x)) lst)))
;; this ordering: map first, then filter! 438

every
» Write a procedure every that takes two
elements, a predicate and a list. (Recall that a
predicate is a function that takes an element

every heartbeat belongs to you!

(define (every pred lst)

and returns #t or #f.) The procedure every (if (null? lst) #t S e
returns #t if the predicate returns #t on each (if (pred (car Ist)) different?
one of its elements. It returns #f if even one (every pred (cdr lst))
element does not pass the test. On the empty #f)))
list, every returns #t.
- (every (lambda (x) (> x 3)) (list456)) ->#t (define (every pred lst)
- (every (lambda (x) (> x 3)) (list 9 1°1)) ~ -> #f (eq? (list-length (filter pred lst))
- (every (lambda (x) (eq? x 3)) (list 3 3)) ->#t (list-length lst)))
- (every (lambda (x) (< x y)) (list)) > # o
count-false count-false

« Write a function count-false that takes two (define (count-false pred lst) All work!
arguments: a predicate and a list. It returns (if (null? lst) O How are they
the number of elements in the list for which different?

the predicate returns #f.

- (count-false (lambda (x) (> x 3)) (list 123456789 10))
3

- (count-false (lambda (x) (> x 3)) (list -1 -2 -3 -4))
o4

- (count-false (lambda (x) (eq? x “a”)) (list “a” “b” “a”))
o1

- (count-false (lambda (x) (eq? x “a”)) (list))
«0

(if (pred (car lst))
(count-false pred (cdr lst))
(+ 1 (count-false pred (cdr lst)))

(define (count-false pred [st)
(list-length (filter (lambda (x) (not (pred x))) lst))

(define (count-false pred lst)
(- (list-length (st)
(list-length (filter pred lst))))

#42

Questions

» We're more or less done with procedure
practice in class.

» Test questions may look a lot like this.

« If you're still having trouble with these, come
see Wes or a TA. We'll make up problems for
you to practice and go over writing recursive
procedures with you.

» Time permitting, ask me anything now.

Homework

» Read Course Book Chapter 6 before Monday
« Start in on PS3 (due Wednesday)
« Start on reading Chapter 7

#44

