
#1

The Value of Everything
& Procedure Practice #2

One-Slide Summary

• In Scheme, expressions evaluate to values.
Five evaluation rules describe this process.

• Lambda means “make a function”. A lambda
expression specifies the formal parameter and
the function body.

• Evaluating a function application involves
evaluating the function, finding its body,
replacing the formal parameters with the
evaluated actual arguments, and evaluating
the result.

#3

Lecture Outline

• Survey Responses

• Evaluation Rules
– Lambda

• Problem Set 1
– Decent Scheme

#4

How To Use Lab Hours
• Read the problems on your own and try them out first.

– You can not just go to a TA and say “I don't get it,
what do I do.”
•The TA is allowed to send you away.

– You must demonstrate about five minutes worth of
work: either on scratch paper, or with code you've
tried and commented out.

– For example: how would you do it in English?

• Talk to your friends.

• Do not expect to finish the Problem Sets in just the
staffed lab time.
– They take longer. You must do much work alone.

#5

The Forum!
• Your questions for

me are answered on
the forum.

• Any questions right
now?
– Congrats to Gitae B.,

Hyosang K., and
Sarah P. who already
have perfect PS1
coding scores ...

#6

Who Is Your Hero?

• Vonnegut, Rosalind Franklin, Mom, Batman,
Gaiman, Casteen, King Sejong, Ramanujan,
Tony Mata, Dawkins, Jesus, Einstein x2,
Newton x3, Dyson, Nobel, Bach, Escher,
Cantor, Hari Seldon, Sagan, Pausch, Jefferson,
Father, Fareed Zakaria, Erdos, Robert
Langdon, Tesla, Marx.
– CS 1120 Gestalt Student, Fall 2010
– (first proper name mentioned per response)

#7

Problem Set 1

• Scheme's Evaluation Rules tell you how to
find the value of any expression.

• Questions 1 and 2 ask you to evaluate
Scheme expressions in your mind
– This is a popular exam question.

• Without Evaluation Rules: guesswork
• Once you know the Evaluation Rules, you

can answer without any guessing!

#8

Evaluation Rules
• Primitives (* 55 66)

– Evaluate to their pre-defined values

• Names (+ x 2)
– Evaluate to the value associated with that name

• Application (square-root 144)
– Eval all sub-expressions. Apply the value of the

first (a function) to the values of the others.

• Lambda (lambda (x) (* x x x))
– Evaluates to a function with parameters and body

• If (if (< 3 5) 99 11)
– Eval predicate. If #f, eval second option.

Otherwise, eval the first option.

#9

Primitive Examples

5
-88
#t
#f
+

What do these
evaluate to?

#10

Primitive Examples

55 --> 5
-88 --> -88
#t --> true (#t)
#f --> false (#f)
+ --> primitive addition

#11

Name Examples

(define x 55)
(define y 66)

x
y
z

What do these
evaluate to?

#12

Name Examples

(define x 55)
(define y 66)

x --> 55
y --> 66
z --> reference to undefined identifier: z

#13

Application Examples

(sqrt 16)
(abs -5)
(string-length “Hi”)
(+ 1 2)
(+ 1 2 3)
(+ 1)

What do these
evaluate to?

#14

Application Examples

(sqrt 16) --> 4
(abs -5) --> 5
(string-length “Hi”) --> 2
(+ 1 2) --> 3
(+ 1 2 3) --> 6
(+ 1) --> 1

#15

Liberal Arts Trivia: Anthropology

• This American cultural anthropologist is
famous for her studies of Samoa and her
reports about the purportedly healthy attitude
towards sex in South Pacific and Southeast
Asian traditional cultures, which influenced
the women's liberation movement (e.g., by
claiming that females dominated in Chambri
and Papau New Guinea without problems). Five
years after she died, her work was challenged
by Derek Freeman.

#16

Liberal Arts: Slavic Folklore

• This witch-like character in Slavic folklore lives
in a walking house with chicken feet (but no
windows and no doors), flies around on a giant
mortar, and kidnaps (presumably to eat) small
children. Modest Mussorgsky's Pictures at an
Exhibition, a piano suite composed in 1874,
features "The Hut on Bird's Legs" as its
penultimate movement.

#17

Lambda

• Lambda means “make a function”.
• Consider: cube(x) = x * x * x
• Scheme-y: cube(x) = (* x x x)

• Lambda: cube = (lambda (x) (* x x x))
• Pure Scheme:
 (define cube (lambda (x) (* x x x)))

#18

Anatomy Of A Function

• (define cube (lambda (x) (* x x x)))

• (cube 5)

• To evaluate a function application, replace it
with the function body, and then replace every
formal parameter with its corresponding actual
argument.

• (cube 5) -> (* x x x) -> (* 5 5 5) -> 125

function application
actual arguments

function bodyformal parameters

#19

Lambda Examples

(define cube (lambda (x) (* x x x)))
(define foo (lambda (p q) (+ p q)))
(define bar (lambda (a b c) (* a c)))

(cube 3)
(foo 5 6)
(bar 4 5 6)
(foo (cube 3) 1)

What do these
evaluate to?

#20

Lambda Examples

(define cube (lambda (x) (* x x x)))
(define foo (lambda (p q) (+ p q)))
(define bar (lambda (a b c) (* a c)))

(cube 3) --> (* 3 3 3)->27
(foo 5 6) --> (+ 5 6) -> 11
(bar 4 5 6) --> (* 4 6) -> 24
(foo (cube 3) 1) --> ... -> 28

#21

Lambda Lambda Lambda

• Consider these two functions:
– (define cube (lambda (x) (* x x x)))
– (define cube (lambda (y) (* y y y)))

• Are they different?
• Consider:

– (define nail (lambda (x y) (+ x y)))
– (define polish (lambda (y x) (/ y x)))

• What is:
– (polish (nail 6 4) 2)

Do this now
on paper!

#22

Sally Hansen does Lambda
(define nail (lambda (x y) (+ x y)))
(define polish (lambda (y x) (/ y x)))
(polish (nail 6 4) 2)
• This is a call to polish with tricky arguments.
• Recall the rule: evaluate the arguments first.

– Argument 1: (nail 6 4) -> (+ x y) -> (+ 6 4) -> 10
– Argument 2: 2 -> 2

• Now take polish's body, and replace the formal
parameters with the actual arguments:
– (/ y x) -> (/ 10 2) -> 5 Why not

(/ 2 10) ?

#23

If Examples

(if #t “yes” “no”)
(if #f “yes” “no”)
(if (< 3 5) “ant” “bat”)
(if (< 5 3) “cat” “dog”)
(if “x” “y” “z”)
(if (if 11 #f #t) 22 33)

What do these
evaluate to?

#24

If Examples

(if #t “yes” “no”) -> “yes”
(if #f “yes” “no”) -> “no”
(if (< 3 5) “ant” “bat”) -> “ant”
(if (< 5 3) “cat” “dog”) -> “dog”
(if “x” “y” “z”) -> “y”
(if (if 11 #f #t) 22 33) -> 33

#25

Scheme Trickery
• (100 + 100)

– Error: The expression in the first position must be a
function (or something special like if). 100 is not a
function.

• (if (not “batterie”) “fouetté” “plié”))
– “plié”. (not “batterie”) returns #f, because

“batterie” is not #f.
• (define (not v) (if v #f #t))

• Does (if X #t #f) always equal X ?
– Yes for #t, #f, (< 3 5), (> 5 6).
– No for 3, 17, “hello”.

#26

EvalEval

ApplyApply

Evaluating
expressions
and Applying
functions are
defined in terms
of each other.

Without Eval,
there would be
no Apply,
Without Apply
there would be
no Eval!

#27

Now You Know All of Scheme!

• Once you understand Eval and Apply, you
can understand all Scheme programs!

• Except:
– There are many primitives, and you need to

know their predefined meaning.
– There are a few more special forms (like if).
– We have not define the evaluation rules

precisely enough to unambiguously
understand all programs (e.g., what does
“value associated with a name” mean?).

#28

Now On To Problem Set 1

• Smooth transition ...

#29

brighter?

(define brighter? (lambda (color1
color2) (if (> (+ (get-red color1)
(get-green color1) (get-blue color1)
) (+ (get-red color2) (get-green
color2) (get-blue color2)) #t
#f)))

Is this correct?
Maybe...but very hard to tell.
Your code should appear in a
way that reveals its structure

#30

(define brighter?
 (lambda (color1 color2)
 (if (> (+ (get-red color1)
 (get-green color1)
 (get-blue color1))
 (+ (get-red color2)
 (get-green color2)
 (get-blue color2))
 #t #f)))

Use [Tab] in DrScheme to line up your code structurally!

#31

Brighter brighter??

(define brighter?
 (lambda (color1 color2)
 (> (+ (get-red color1)
 (get-green color1)
 (get-blue color1))
 (+ (get-red color2)
 (get-green color2)
 (get-blue color2)))))

What can we do about this duplicated code?

#32

Brighter brighter??

(define brightness
 (lambda (color)
 (+ (get-red color)
 (get-green color)
 (get-blue color))))

(define brighter?
 (lambda (color1 color2)
 (> (brightness color1)
 (brightness color2)))

#33

Believable brighter??

(make-color 255 255 0) (make-color 255 1 255)

#34

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT14/

Color Absorbed

#35

Cognitive Scientist’s Answer

(define brightness
 (lambda (color)
 (+ (* 0.299 (get-red color))
 (* 0.587 (get-green color))
 (* 0.114 (get-blue color)))))

(define brighter?
 (lambda (color1 color2)
 (> (brightness color1)
 (brightness color2)))

#36

Liberal Arts Trivia: Physics

• This 1797 torsion balance
experiment, sometimes
called “weighing the earth”,
was the first to measure the
force of gravity between
masses in the laboratory,
and the first to yield
accurate values of the
gravitational constant and
thus the mass of the Earth.

#37

Liberal Arts Trivia: Grab Bag

• Q. This series of music video games
was produced by Konami in 1998.
The series pioneered the rhythm and
dance genre in video games. Players
stand on a “dance platform” or
stage and hit colored arrows laid out
in a cross with their feet in time
with musical and visual cues.

#38

Liberal Arts Trivia: Drama

• This classical Athenian tragedy by Sophocles,
first performed in BC 429, is widely considered
a supreme masterpiece of the art of Drama.
The Oracle at Delphi tells the protagonist that
he is doomed to marry his mother and kill his
father. He goes on to do so, but not before
solving the riddle of the sphinx: What is the
creature that walks on four legs in the
morning, two legs at noon, and three in the
evening? Name the play and answer the riddle.

#39

What should you do if you can’t
get your code to work?

• Keep trying: think of alternate approaches
• Get help from the TAs and your classmates
• But, if it's too late for that ...

– In your submission, explain what doesn’t
work and as much as you can what you think
is right and wrong

• If you get less than 50% on the automatic
adjudication part, the TAs will look over
your source and give partial credit.

#40

Evaluation Rules

• A formal review and study guide follows ...

#41

Primitive Expressions

Expression ::= PrimitiveExpression
PrimitiveExpression ::= Number

PrimitiveExpression ::= #t | #f
PrimitiveExpression ::= Primitive Procedure

Evaluation Rule 1: Primitive. If the
expression is a primitive, it evaluates to its
pre-defined value.

> +
#<primitive:+>

#42

Name Expressions

Expression ::= NameExpression
NameExpression ::= Name

Evaluation Rule 2: Name. If the expression is
a name, it evaluates to the value associated
with that name.

> (define two 2)
> two
2

#43

Definitions

Definition ::= (define Name Expression)

Definition Rule. A definition evaluates the
Expression, and associates the value of
Expression with Name.

> (define dumb (+ + +))
+: expects type <number> as 1st argument, given: #<primitive:+>;
other arguments were: #<primitive:+>

> dumb
reference to undefined identifier: dumb

#44

Application Expressions
Expression ::= ApplicationExpression
ApplicationExpression ::= (Expression MoreExpressions)
MoreExpressions ::= ε | Expression MoreExpressions

Evaluation Rule 3: Application. To evaluate
an application expression:
a. Evaluate all the subexpressions;
b. Then, apply the value of the first

 subexpression to the values of the
 remaining subexpressions.

#45

Rules for Application
• Primitive. If the procedure to apply is a

primitive, just do it.

• Constructed Procedure. If the
procedure is a constructed (lambda)
procedure, evaluate the body of the
procedure with each formal parameter
replaced by the corresponding actual
argument expression value.

#46

Constructing Procedures: Lambda

Expression ::= ProcedureExpression
ProcedureExpression
 ::= (lambda (Parameters) Expression)
Parameters ::= ε | Name Parameters

Evaluation Rule 4: Lambda. Lambda
expressions evaluate to a procedure that takes
the given Parameters as inputs and has the
Expression as its body.

#47

Applying Constructed Procedures
Application Rule 2: Constructed

Procedure. If the procedure is a
constructed (lambda) procedure,
evaluate the body of the procedure with
each formal parameter replaced by the
corresponding actual argument
expression value.

#48

Applying Constructed Procedures
Application Rule 2: Constructed Procedure. If the

procedure is a constructed procedure, evaluate the
body of the procedure with each formal parameter
replaced by the corresponding actual argument
expression value.

> ((lambda (n) (+ n 1)) 2)

((lambda (n) (+ n 1)) 2)
Evaluation Rule 3a: evaluate the subexpressions

Evaluation Rule 3b, Application Rule 2

(+ 2 1)
Evaluation Rule 3a, 3b, Application Rule 1

3

#49

Evaluation Rule 5: If
Expression ::= (if ExpressionPredicate

 ExpressionConsequent

 ExpressionAlternate)

Evaluation Rule 5: If. To evaluate an if
expression:
• Evaluate the predicate expressions.
• If it evaluates to #f, the value of the if

expression is the value of alternate
expression. Otherwise, the value of the if
expression is the value of consequent
expression.

#50

Lambda Example: Tautology Function

(lambda
 ()
 #t)

> ((lambda () #t) 150)
#<procedure>: expects no arguments, given 1: 150
> ((lambda () #t))
#t
> ((lambda (x) x) 150)
150

make a procedure
with no parameters
with body #t

#51

Homework
• (In theory) You now know everything you

need for PS1, PS2, PS3 and PS4 ...
• Honor Pledge due today (now!)
• Problem Set 1 due Monday September 6

– ... at 3:30pm

