Programming With Data

#1

One-Slide Summary
« A list is a data structure, a way of storing and
organizing data.
« cons creates a pair of two values.
e car and cdr (or first and rest) extract the
first and second elements of a cons pair.

e A list is a recursive data structure. A list is
either empty (called null) or a cons pair
where the second element is a list.

» A recursive function has a simple base case
and a recursive case (where it calls itself).

Outline

e Problem Set 1 CREATING AN AN PROFILE:

- Babylonian Patents
e Scheme and LISP
e Data Structures

- Pairs
- cons, car, cdr D
. msﬂs]‘rﬁ‘r?tf;f
- Triples sl o LOF.
o Lists e

e Procedures

Problem Set 1

« Colors and photomosaics, oh my!

=™

e Comments?

The Patented RGB RMS Method

/* This is a variation of RGB RMS error. The final square-root has been eliminated to */
/* speed up the process. We can do this because we only care about relative error. */

/* HSV RMS error or other matching systems could be used here, as long as the goal of */
/* finding source images that are visually similar to the portion of the target image */
/* under consideration is met. */

for(i = 0; i > size; i++) {

rt = (int) ((unsigned char)rmas[i] - (unsigned
char) image->r[i]);

gt = (int) ((unsigned char)gmas[i] - (unsigned char)
image->g[i];

bt = (int) ((unsigned char)bmas[i] - (unsigned

char) image->b[i];

result += (rt*rt+gt*gt+bt*bt);

}

Your code should never look like this! Use new lines and
indenting to make it easy to understand the structure of
your code! (Note: unless you are writing a patent. Then the
goal is to make it as hard to understand as possible.)

#5

The Patented RGB RMS Method

rt = rmas[i] - image->r[i];
gt = gmas[i] - image->g[i];
bt = bmas[i] - image->b[i];
result += (rt*rt + gt*gt + bt*bt);

» Patent Requirements
- New - must not be previously available
« Ancient Babylonians made mosaics
- Useful
- Non-obvious
» Many of you came up with this method!

» Some of you used abs instead, which works as well 45

History of Scheme

« Scheme [Guy Steele & Gerry Sussman, 1975]

Guy Steele co-designed Scheme and created the
first Scheme interpreter for his 4* year project

More recently, Steele specified Java [1995]
- “Conniver” [1973] and “Planner” [1967]

» Based on LISP [John McCarthy, 1958]

- Based on Lambda Calculus (Alonzo Church,
1930s)

- Last few lectures in course on Lambda Calc

#7

LISP

“Lots of Insipid Silly Parentheses”
“Lost In a Sea of Parentheses”

“LISt Processing language”

Lists are pretty important — hard to
write a useful Scheme program
without them.

T WONDER IF THE CYCLES
WILL CONTINUE FOREVER

A, FEW CODERS FROMEACH

NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

LISP 15 QVER HALT A
CENTURYQLD AND IT
STILL HAS THIS PERFECT
TIMELESS AIRABOUTIT.

3, =
3 @,

! { ELEGANT
~\ WEAPONS

FOR A MORE ... CIVILIZED AGE-

#3

Ways to Design Programs

Think about what you want to do, and
turn that into code.

Think about what you need to
represent, and design your code around
that.

Which is better?

#9

ey
Data Structure

« A data structure is a way of storing and
organizing data so that it can be used
efficiently by a computer program.

- A well-designed data structure allows many
operations to be performed, using as few resources
(such as time and memory space) as possible.

« When designing of many computer programs, the
choice of data structures is a primary consideration.
Experience in building large systems has shown that
the difficulty of implementation and the quality and
performance of the final result depend heavily on
choosing the best data structure.

#10

Data Structure Examples

16777216
“aaftab labeh boomeh”
<38.0292,-78.5662>

single integer:
string:

<X,y> pair
Family tree

#11

Data Structure Example: List

« List of classes, list of students, list of French
war heroes, list of countries in the UN, list of
X-men, list of groceries, ...

(define gnome-plan (list “collect underpants”
“?” “prof.it”))

Puasel Prase2 Prased

2

Collect
llnd('l‘p.l nts

Profig

Liberal Arts Trivia: Philosophy

« In the Utopian Kallipolis, philosopher kings
ruled the ideal city state: "Philosophers [must]
become kings...or those now called kings [must]
...genuinely and adequately philosophize.” In
the same book, the author fashions the ship-
of-state metaphor: "[A] true pilot must of
necessity pay attention to the seasons, the
heavens, the stars, the winds, and everything
proper to the craft if he is really to rule a
ship”. Name the philosopher and the book.

#13

Liberal Arts Trivia: Neuroscience

» These parts of a neuron are cellular extensions
with many branches, and metaphorically this
overall shape and structure is referred to as a
tree. This is where the majority of input to the
neuron occurs. Information outflow (i.e. to other
neurons) can also occur, but not across chemical
synapses; there, the backflow of a nerve impulse
is inhibited by the fact that an axon does not
possess chemoreceptors and these parts cannot
secrete neurotransmitter chemicals. This
unidirectionality of a chemical synapse explains
why nerve impulses are conducted only in one
direction.

#14

Making Lists

e Lists are so important that we will now discuss
how to make them. (define villains-1984 ...)

#15

Making a Pair

> (cons 1 2)
(1.2)

1t
[\
1 2

cons constructs a pair

#16

Splitting a Pair

car cdr

?

1
> (cdr (cons 1 2)) /
2 1

(car (cons 1 2))

¢
\
2

car extracts first part of a pair
cdr extracts second part of a pair

#17

Why “car” and “cdr”?

« Original (1950s) LISP on IBM 704
- Stored cons pairs in memory registers
- car = “Contents of the Address part of the
Register”
- cdr = “Contents of the Decrement part of the
Register” (“could-er”)
» Doesn’t matter unless you have an IBM 704

» Think of them as first and rest
(define first car)
(define rest cdr)

(The DrScheme “Pretty Big” language
already defines these, but they are not part
of standard Scheme.)

#18

Implementing cons, car and cdr

(define (cons a b)
(lambda (w) (if w a b)))

Advanced
Detail!

(define (car pair) (pair #t)
(define (cdr pair) (pair #f)

Scheme provides primitive implementations for cons,
car, and cdr. But, we could define them ourselves.

#19

Pairs are fine, but how do
we make threesomes?

#20

Triple

A triple is just a pair where one of
the parts is also a pair!

(define (triple a b ¢)
(cons a (cons b c)))
(define (t-first t) (car t))
(define (t-second t) (car (cdr t)))
(define (t-third t) (cdr (cdr t)))

#21

Quadruple

A quadruple is a pair where the second
part is a triple

(define (quadruple a b c d)

(cons a (triple b c d)))
(define (q-first q) (car q))
(define (q-second q) (t-first (cdr t)))
(define (q-third t) (t-second (cdr t)))
(define (q-fourth t) (t-third (cdr t)))

#22

Multuples

A quintuple is a pair where the second part is
a quadruple

A sextuple is a pair where the second part is a
quintuple

» A septuple is a pair where the second part is a
sextuple

» An octuple is group of octupi

« A 7 is a pair where the second part is a ...?

The Feynman point is the sequence of six 9s which begins at the 762nd decimal place of m. It is named i
after physicist Richard Feynman, who once stated during a lecture he would like to memorize the digits of ;
m until that point, so he could recite them and quip "nine nine nine nine nine nine and so on." i

#23

Lists

List ::= (cons Element List)

A list is a pair where the second part is a list.

One big problem: how do we stop?
This only allows infinitely long lists!

#24

Lists

List ::
List ::=

(cons Element List)

It's hard to write this!

A list is either:
a pair where the second part is a list
or, empty

The function 1ist? returns #t for a list and
#f for all other values.

#25

Null

List ::= (cons Element List)
List ::= null

A list is either:
a pair where the second part is a list
or, empty (null)

The function null? returns #t for the empty
list and #f for all other values.

#26

List Examples

> null

()

> (cons 1 null)
(1)

> (list? null)

#t

> (list? (cons 12)) _ =
#f N

> (list? (cons 1 null))

#t

#27

More List Examples

> (list? (cons 1 (cons 2 null)))
> (car (cons 1 (cons 2 null)))
> (cdr (cons 1 (cons 2 null)))

R—

>(null? (list12)) o=

> (null? null)

#28

More List Examples

> (list? (cons 1 (cons 2 null)))
#t

> (car (cons 1 (cons 2 null)))
1

> (cdr (cons 1 (cons 2 null)))
(2)

> (null? (list 1 2))

#H

> (null? null)

#t

#29

Recap

* A list is either:
a pair where the second part is a list
or null (note: some books use nil)

« Pair primitives:

(cons ab) Construct a pair <a, b>
(car pair) First part of a pair
(cdr pair) Second part of a pair

#30

Card Tricks for Problem Set%

Tl

#31

Problem Set 2:
Programming with Data

» Representing a card

car cdr

\
_—

Pair of rank (Ace) and suit (Spades)

#32

Problem Set 2:
Programming with Data

» Representing a card: (cons <rank> <suit>)
» Representing a hand:

Ny

o

wte
i

(list (make-card Ace clubs)
(make-card King clubs)

(make-card Jack clubs)
(make-card 10 clubs))

(make-card Queen clubs)

#33

Liberal Arts Trivia: Nursing

» This “Lady with The Lamp” was a nurse, writer
and statistician. Her Diagram of the Causes of
Mortality in the Army in the East was a
pioneering use of statistical graphics, including
the pie chart and polar area diagram (Crimean
War, 1854).

Liberal Arts Trivia: Geography

Name the largest enclosed
body of water on Earth by
area, variously classed as the
world's largest lake or a full-
fledged sea. It has a surface
area of 371,000 square b
kilometers and is bounded by §&
northern Iran, southern ‘
Russia, western Kazakhstan
and Turkmenistan, and
eastern Azerbaijan.

 { considered cryptic and hard to

#35

Liberal Arts Trivia: Jewish Studies

M discussions pertaining to

*| Scholars often produce running,
| commentaries that explicate

This record of rabbinic

Jewish law, ethics, customs
and history is a central text of
mainstream Judaism. It is

Greek and Persian words.

sections.

#36

How To Write A Procedure

 Find out what it is supposed to do.
- What are the inputs? What types of values?
- What is the output? A number? Procedure? List?
« Think about some example inputs and outputs
 Define your procedure
- More on this next slide
» Test your procedure

#37

Defining A Procedure
» Be optimistic!
» Base case: Think of the simplest input to the
problem that you know the answer to.
- For number inputs, this is often zero.
- For list inputs, this is often the empty list (null).
» Recursive step: Think of how you would solve
the problem in terms of a smaller input. Do
part of the work now, then make a recursive
call to handle the rest.
- For numbers, this usually involves subtracting 1.

- For lists, this usually involves cdr. -

Procedure Skeleton

« The vast majority of recursive functions look
like this:

(define (my-procedure my-input)
(if (is-base-case? my-input)
(handle-base-case my-input)
(combine (first-part-of my-input)
(my-procedure (rest-of my-input)))))

#39

Example: max-elt

» “Define a procedure max-elt to find the
maximum element in a list of positive
integers. If the list is empty, return 0.”
- What is the input?

- What is the output?
- Example input:

o (list 12) ->2

o (list753)->7

#40

max-elt Skeleton

(define (my-procedure my-input)
(if (is-base-case? my-input)
(handle-base-case my-input)
(combine (first-part-of my-input)
(my-procedure (rest-of my-input)))))
- is-base-case? = handle-base-case =
first-part-of =

- combine = rest-of =

max-elt Skeleton

(define (my-procedure my-input)
(if (is-base-case? my-input)
(handle-base-case my-input)
(combine (first-part-of my-input)
(my-procedure (rest-of my-input)))))
- is-base-case? = null? handle-base-case = 0
first-part-of = first

- combine = max rest-of = rest

#42

max-elt defined!

(define (my-procedure my-input)
(if (is-base-case? my-input)
(handle-base-case my-input)
(combine (first-part-of my-input)
(my-procedure (rest-of my-input)))))
- is-base-case? = null? handle-base-case = 0
- combine = max first-part-of = first rest-of = rest
(define (max-elt my-input)
(if (null? my-input)
0
(max (first my-input)
(max-elt (rest my-input)))))

List Length
 Define a procedure that takes as input a
list, and produces as output the length of

that list.

(length null) = 0
(length (list 12 3)) 2> 3
(length (list 1 (list 2 3 4))) = 2

Do this now on paper. Yes, really. HintO:
what is def'n of a list? Hint1: use if and
null?.

#44

List Length

e List is a recursive data structure, so length
must be a recursive function.

By definition, a list is either empty or a pair
containing another list.
- The length of the empty list is 0.

- The length of a non-empty list is 1 + the length of
its tail.

(define (length x)
(if (null? x) 0 (+ 1 (length (rest x)))))

#45

Homework

« It's OK if you are confused now.

« Lots of opportunities to get unconfused:
- Problem Set 2 (and PS3 and PS4)
- Forum!
- Read the Course Book

Next Class - lots of examples programming with
recursive functions and definitions

- Office and Lab Hours!

#46

