
CS 410

Lecture Outline

• Code Generation for a Stack Machine

• a simple language

• activation trees again

• a simple implementation model: the stack machine

• stack machine implementation of the simple

language

– design of activation records

– code generation

Note: these lecture notes are by Alex Aiken for his

compiler class at UC Berkeley with minor

modifications made for local use.

1



CS 410

A Small Language

• A language with integers and integer operations:

P → D; P | D
D → def id(ARGS) = E;

ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4 |

E1 + E2 | E1 − E2 | id(E1, . . . , En)

• The first function definition f is the “main” routine.

• Running the program on input i means compute f(i).

• Computing the ith Fibonacci number:

def fib(x) = if x = 1 then 0 else

if x = 2 then 1 else

fib(x-1) + fib(x-2)

2



CS 410

Review: Activation Trees

• The activation tree for a run of a program is a graph

of the function calls.

• For fib(4), the activation tree is:

fib(4)

fib(3) fib(2)

fib(2) fib(1)

• Activation records are managed using a runtime stack.

• At any point during execution, the activation stack

describes some path starting from the root of the ac-

tivation tree.

3



CS 410

A Stack Machine

• A stack machine evaluates one expression at a time.

• The value of an expression is stored in a

distinguished register called the accumulator

(or acc).

• A stack is used to hold intermediate results.

• To evaluate an expression op(e1, . . . , en):

1. Evaluate e1, . . . , en, pushing results on the stack.

2. Set acc = op(e1, . . . , en) using values on the stack.

3. Pop values of e1, . . . , en off of the stack.

• Note: All expressions evaluate into acc; all

expressions expect to find the values for other

expressions in acc.

4



CS 410

Example

• Consider the expression e1 + e2.

• At a high level, the stack machine code will be:

<code to evaluate e1>

push acc on the stack

<code to evaluate e2>

push acc on the stack

add top two stack elements, store in acc

pop two elements off the stack

• Observation: There is no need to push the result of e2

on the stack.

<code to evaluate e1>

push acc on the stack

<code to evaluate e2>

add top stack element and acc, store in acc

pop one element off the stack

5



CS 410

Notes

• The code for + is a template with “holes” for code for

e1 and e2.

• Stack machine code generation is recursive.

• Code for e1 + e2 consists of code for e1 and e2 glued

together.

• Code generation—at least for expressions—can be

written as a recursive-descent of the AST.

6



CS 410

A Bigger Example

• Consider (1 + 2) + 3.

• Let sp be the stack pointer (held in a register).

• Code for an integer i is acc← i.

• (sp) is the value stored at address sp.

• Pseudo-code for the expression:

acc <- 1 | 1’s code | |

push acc (onto stack) | code |

acc <- 2 | 2’s code | for |

acc <- acc + (sp) | 1+2 | code

pop (the stack) | | for

push acc | (1+2)

acc <- 3 | 3’s code | +3

acc <- acc + (sp) |

pop |

7



CS 410

MIPS Assembly

• Next Step: Switch to MIPS assembly language.

• A sample of MIPS instructions:

– sw reg1 offset(reg2)

store word in reg1 at reg2 + offset

(contents of reg2 used as an address)

– lw reg1 offset(reg2)

load word from reg2 + offset into reg1

– add reg1 reg2 reg3

reg1 := reg2 + reg3

– addiu reg1 reg2 imm

add immediate (i.e., constant),

u means overflow not checked

• $a0 is the accumulator (a MIPS register)

• $sp is the stack pointer

– $sp points to the first word beyond stack top

– on the MIPS, stack grows towards low addresses.

(we’ll show it as growing downward)

8



CS 410

MIPS Code Generation for Add

• Define a function cgen(e) for each expression e.

cgen(e1 + e2) =

cgen(e1)

sw $a0 0($sp) | push the acc on the

addiu $sp $sp -4 | stack

cgen(e2)

lw $t1 4($sp) | load result of e1

add $a0 $a0 $t1

addiu $sp $sp 4 | pop the stack

• MIPS addresses bytes; to move a pointer by one word,

add 4 bytes.

• Question: Why not put e1 in register $t1

immediately, instead of pushing it on the stack?

9



CS 410

Code Generation for Sub and Constants

• New instruction: sub reg1 reg2 reg3

reg1 = reg2 - reg3

cgen(e1 - e2) =

cgen(e1)

sw $a0 0($sp) | push acc on the

addiu $sp $sp -4 | stack

cgen(e2)

lw $t1 4($sp) | load result of e1

sub $a0 $t1 $a0

addiu $sp $sp 4 | pop the stack

• New instruction: li reg1 imm

Load immediate, reg1 := imm

• Code generation for constant i:

cgen(i) = li $a0 i

10



CS 410

Code Generation for If

• New instruction: beq reg1 reg2 label

jump to label if reg1 = reg2

• New instruction: b label

jump to label

• Code for conditionals:

cgen(if e1 = e2 then e3 else e4) =

cgen(e1)

sw $a0 0($sp) | push e1 on stack

addiu $sp $sp -4

cgen(e2)

lw $t1 4($sp) | pop stack into t1

addiu $sp $sp 4

beq $a0 $t1 true_branch

false_branch:

cgen(e4)

b end_if

true_branch:

cgen(e3)

end_if:

11



CS 410

The Activation Record

• Code for function calls and function definitions

depends on the activation record.

• A very simple AR suffices for this language:

– The result is always in the accumulator.

⇒ No need to store the result in the AR.

– The activation record holds actual parameters.

For f(x1, . . . , xn), push xn, . . . , x1 on the stack.

– The stack discipline guarantees that on function exit

sp is the same as it was on function entry.

⇒ No need for a control link.

– We need the return address.

– It’s handy to have a pointer to the current

activation. This pointer lives in register $fp

(for “frame pointer”).

• Reason for frame pointer will be clear shortly . . .

12



CS 410

The Activation Record (Cont.)

• Summary: For this language, an AR with the caller’s

frame pointer, the actual parameters, and the return

address suffices.

• Picture: Consider a call to f(x,y). The AR will be:

• Using the AR, we can describe code generation for

function definitions and function calls.

13



CS 410

Code Generation for Function Call

• The calling sequence is the instructions—of both caller

and callee—to set up a function invocation.

• New instruction: jal label

Jump to label, save address of next op in $ra.

cgen(f(e1,...,en)) =

sw $fp 0($sp) | push frame pointer

addiu $sp $sp -4

cgen(en) | evaluate and

sw $a0 0($sp) | push actual parameter #n

addiu $sp $sp -4 |

...

cgen(e1) | evaluate and

sw $a0 0($sp) | push actual parameter #1

addiu $sp $sp -4 |

jal f_entry | jump to function entry

• The caller saves the actual parameters in the AR.

• The callee must save the return address.

14



CS 410

Code Generation for Function Definition

• New instruction: jr reg

jump to address in register reg

cgen(def f(x1,...,xn) = e) =

f_entry:

move $fp $sp | set new fp

sw $ra 0($sp) push return address

addiu $sp $sp -4 |

cgen(e)

lw $ra 4($sp) | reload return address

addiu $sp $sp z | z = 4*n + 8 (pop AR)

lw $fp 0($sp) | restore old fp

jr $ra | return

• Note the frame pointer points to the top, not

bottom, of the frame.

15



CS 410

Code Generation for Variables

• Variable references are the last construct.

• The “variables” of a function are just its

parameters, which are in the AR.

• Problem: Because the stack grows when

intermediate results are saved, the variables are not at

a fixed offset from $sp.

• Solution: Use the frame pointer.

• Let xi be the ith formal parameter of the function for

which code is being generated.

cgen(xi) = lw $a0 z($fp) | z = 4*i

16



CS 410

Code Generation for Variables (Cont.)

• Example: For a function def f(x,y) = e

the activation and frame pointer are set up as

follows:

y

x

ra

fp
old

Current fp points here

• x is at fp + 4

• y is at fp + 8

17



CS 410

Summary and Warnings

• The activation record must be designed together with

the code generator.

• Code generation can be done by recursive traversal of

the AST.

• We recommend you use a stack machine for your Espresso

compiler (it’s simple!).

• Production compilers do things differently:

– Emphasis is on keeping values (esp. current stack

frame) in registers.

– Intermediate results are laid out in the AR, not

pushed and popped from the stack.

• See the Web page for a large code generation

example.

18


