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AnalysesAnalyses
For The Lazy SuperheroFor The Lazy Superhero
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PL Fencing Day

• Friday Dec 4 (unless it rains) @ 4:30pm
• Darden Courtyard; no experience necessary
• I provide gear
• I provide lesson
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Final Exam Construction

• No Time Limit
• Closed Book, 2 sides of notes
• High level “take home message” questions

• Email me questions you think are relevant.
• Also, what do you want to hear about on the 

last day of class? Any topic!
• Grade predictions mailed out Fri or Sat

– Hint: ...
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Debugging Experiment

• Takes about one hour
• Identify fault (or not) in Java code

– How difficult was the code to debug?

• Worth 2 points of extra credit on the final
– ... but still anonymous. 

• Research by Zak and Wes
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• Monday – Mani's Day

– The Latin days of the week in imperial Rome were named after the planets, which in turn were named after gods (see discussion at WEEK n.). In most 
cases the Germanic names have substituted for the Roman god's name that of a comparable one from the Germanic pantheon. In the case of Monday (as 
also of Sunday), the name of the planet (as the moon was considered in the classical period) and the god were the same. [OED]

– Monday: Old English Mōnandæg (pronounced [mon.nan.dæg] or [mon.nan.dæj'), meaning "Moon's Day". This is likely based on a translation of the Latin 
name Dies Lunae (cf. Romance language versions of the name, e.g., French Lundi, Spanish, Lunes, Romanian Luni, Italian Lunedì). In North Germanic 
mythology, the moon is personified as a god; Máni. [Wikipedia]

• Tuesday – Tyr's Day

– ... The sky-god Tiw was originally also a god of war, like the Roman Mars. [OED]

– Tyr (pronounced / t r/;[1] Old Norse: Týr [ty r]) is the god of single combat, victory and heroic glory in Norse mythology, portrayed as a one-handed man. ˈ ɪə ː
Corresponding names in other Germanic languages are Gothic Teiws , Old English Tīw and Old High German Ziu, all from Proto-Germanic *Tîwaz. 
[Wikipedia]

• Wednesday – Odin's Day

– The identification of Woden, the highest god of the Germanic pantheon, with the Roman Mercury is already suggested in Tacitus, although he does not give 
a Germanic name (Deorum maxime Mercurium colunt, ‘they worship Mercury most of all the gods’, Germania 9); common features between these gods 
include eloquence, swiftness, range of travel, and guardianship of the dead. ...  The name of Woden (Old English W{omac}den, Old Saxon W{omac}den, Old 
High German Wuotan, Old Icelandic Ó{edh}inn) derives < the Germanic base of WOOD adj. + a nasal suffix. [OED]

– Wotan, the High German variant of Wōden, the Continental West Germanic god corresponding to Norse Odin. [Wikipedia]

• Thursday – Thor's Day

– The contemporary name comes from the Old English Þunresdæg, "Thunor's Day"[1][2][3] (with loss of -n-, first in northern dialects, from influence of Old 
Norse Þorsdagr, meaning "Thor's Day"). Thunor and Thor are derived from the Proto-Germanic god Thunaraz, god of thunder. [Wikipedia]

• Friday – Frig's Day

– The name of Frig (Old English Fr{imac}g, Old High German Frija, Old Icelandic Frigg, in Icelandic mythology the consort of Odin) is attested in Old English 
only in the name of the day of the week ... [OED]

– The name Friday comes from the Old English frīgedæg, meaning the day of Frige the Old English form of Frigg, a West Germanic translation of Latin dies 
Veneris, "day (of the planet) Venus." However, in most Germanic languages the day is named after freyja—such as Frīatag in Old High German, Freitag in 
Modern German, Freyjudagr in Old Norse, Vrijdag in Dutch, Fredag in Swedish, Norwegian, and Danish—but Freyja and Frigg are frequently identified with 
each other. [Wikipedia]

• Sunday – Sun's Day

– Sunday: Old English Sunnandæg (pronounced [sun.nan.dæg] or [sun.nan.dæj), meaning "Sun's Day". ... In both West Germanic and North Germanic 
mythology the sun is personified as a goddess; Sunna/Sól. [Wikipedia]

• General:

– Saturday: the only day of the week to retain its Roman origin in English, named after the Roman god Saturn associated with the Titan Cronus, father of 
Zeus and many Olympians. 
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Random InterpretationRandom Interpretation
Sumit Gulwani Sumit Gulwani && George Necula George Necula
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Probabilistically Sound 
Program Analysis!

• Sound program analysis is hard (Rice’s Theorem)
• PL researchers usually pay in terms of 

– Loss of completeness or precision
– Complicated algorithms
– Long running times

• Can we pay in terms of soundness instead?
– Basically, soundness = correctness
– Judgments are unsound with low probability
– We can predict and control the probability of error
– Can gain simplicity and efficiency
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Discovering Affine Equalities
• Given a program (control-flow graph) … 
• Discover equalities of the form 2y + 3z = 7

– Compiler Optimizations
– Loop Invariants
– Translation Validation

• There exist polynomial time deterministic 
algorithms [Karr 76]
– involving expensive operations - O(n4)

• We present a randomized algorithm
– as complete as the deterministic algorithms
– but faster - O(n2)
– and simpler (almost as simple as an interpreter)
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b; 
d := b – 2;

T

T F

F

Example 1

•Random testing will have 
to exercise all the 4 paths to 
verify the assertions

•Our algorithm is similar to 
random testing

• However, we execute the 
program once, in a way that 
it captures the “effect” of 
all the paths
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b; 
d := b – 2;

T

T F

F

Example 1

•Random testing will have 
to exercise all the 4 paths to 
verify the assertions

•Our algorithm is similar to 
random testing

• However, we execute the 
program once, in a way that 
it captures the “effect” of 
all the paths
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b; 
d := b – 2;

T

T F

F

Example 1

•Random testing will have 
to exercise all the 4 paths to 
verify the assertions

•Our algorithm is similar to 
random testing

• However, we execute the 
program once, in a way that 
it captures the “effect” of 
all the paths

•Exponential work, linear 
time! (P=NP?)
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Idea #1: Affine Join Operation
• Execute both the branches
• Combine the values of the variables at joins 

using the affine join operation ©w for some 
randomly chosen w 

v1 ©w v2  = w £ v1 + (1-w) £ v2

a := 2; b := 3; a := 4; b := 1;

a = 2 ©7 4 = -10
b = 3 ©7 1 = 15

(w = 7)
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b; 
d := b – 2;

a = 1, b = 0a = 0, b = 1

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for 
each join independently.

• All choices of random 
weights verify the first 
assertion

• Almost all choices 
contradict the second 
assertion.
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

c := 2a + b; 
d := b – 2;

a = 1, b = 0a = 0, b = 1

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for 
each join independently.

• All choices of random 
weights verify the first 
assertion

• Almost all choices 
contradict the second 
assertion.
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

c := 2a + b; 
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5 
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for 
each join independently.

• All choices of random 
weights verify the first 
assertion

• Almost all choices 
contradict the second 
assertion.
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

a = -4, b = 5
c = -39, d = 39 

c := 2a + b; 
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5 
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for 
each join independently.

• All choices of random 
weights verify the first 
assertion

• Almost all choices 
contradict the second 
assertion.
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Geometric Interpretation of the 
Affine Join operation

x

y

x + y = 1

x = 2

(x = 0, y = 1)

(x = 1, y = 0)

: State before the join

: State after the join

      satisfies all the affine 
relationships that are 
satisfied by both          
(e.g. x + y = 1, z = 0)

Given any relationship 
that is not satisfied by 
any of      (e.g. x=2),           
also does not satisfy       
it with high probability
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Example 2

a := x + y

   b := a b := 2x

assert (b = 2x)

T F
if (x = y)

•Idea #1 is not 
enough

•We need to make 
use of the 
conditional x=y on 
the true branch
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Idea #2: Adjust Operation
• Execute multiple runs of the program in parallel

• “Sample” = Collection of states at each program 
point

• “Adjust” the sample before a conditional (by 
taking affine joins of the states in the sample) 
such that
– Adjustment preserves original relationships
– Adjustment satisfies the equality in the conditional

• Use adjusted sample on the true branch
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Geometric Interpretation of the 
Adjust Operation

Original Point

Conditional  
(e2=0)

Adjusted Point

(lies on e1=0)

(lies on e1=0 Å e2=0)

(examples show 

“x=0” for simplicity)
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The Randomized Interpreter R

x := e
S

S’

e = 0 ?True False
S’

S1 S2

S1 S2

S

S1 = Adjust(S’,e)

S2 = S’

 Si = S1
i ©wi S2

i
Si = S’i[x Ã e]
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 Completeness and soundness of R

• We compare the randomized interpreter R 
with a suitable actual interpreter A
– Actual Interpreter A would be too slow (etc.) to 

use in real life!

• R mimics A with high probability
– R is as complete as A 
– R is sound with high probability
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Soundness Theorem
• If A ) g = 0, then with high probability 

R ² g = 0

• Error probability ·  
– b: number of branches
– j: number of joins
– d: size of the field
– r: number of points in the sample

• If j = b = 10, r = 15, d ¼ 232, then 
    error probability · 
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Conclusions, Wessy Summary

• Randomization can help achieve simplicity 
and efficiency at the expense of making 
soundness probabilistic

• Has been extended to handle uninterpreted 
function symbols, interprocedural analyses, 
randomized decision procedures for theorem 
proving, combined abstract interpreters, …

• May help with complicated security analyses
• Go to grad school!
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Q:  TV  (070 / 842) 

•This 1993-1998 Emmy Award-
winning CBS series featured Jane 
Seymour as Dr. Mike. It was 
originally targeted at the 18-
to-40 demographic but ended up 
viewed predominantly by women 
aged 40 or older.  
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Q:  Music  (123 / 842) 

• Name the song: "He was a famous 
trumpet man from old Chicago way. 
He had a boogie style that no one 
else could play. He was the top 
man at his craft, but then his 
number came up and he was gone 
with the draft. He's in the army 
now a-blowin' reveille."  
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Q:  Music  (205 / 842) 

•This 19th century Russian 
composer created the piano 
suite Pictures At An Exhibition. 
It includes a "Tuileries" theme 
depicting children playing in a 
garden near the Louvre.  
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Q:  Movies  (267 / 842) 

•Name the movie described 
below, its heroine and its 
star. This 1979 Ridley Scott 
movie began the first major 
American film series with a 
female action hero.  
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Q:  Movies  (322 / 842) 

•In this 1984 movie one of 
the villains is the Stay Puft 
Marshmallow Man.  
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Q:  Movies  (374 / 842) 

•In this 1989 family 
comedy the children of 
Rick Moranis spend most 
of the day playing with 
bugs in the yard.  
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Quantum ComputingQuantum Computing
1/21/2
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Lies
• This lecture will gloss over most details.

• You actually know more than I know, I just 
don't have time to get into it.

• Math Class: Intro To Quantum Computing
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One-Slide Summary
• A quantum computer manipulates 

quantum bits; such qubits can represent a 
superposition of possible states. 

• Quantum computers are probabilistic. 
Grover's Algorithm (for linear search in 
sub-linear time) and Shor's Algorithm (for 
factoring integers in polylog time) are 
common quantum algorithms.

• When you use a quantum computer to “try 
everything in parallel” you get back a 
random answer.
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Theory and Practice

• Quantum Computers do not yet exist
• But we can still talk about them in theory
• Serious experimental work remains to be 

done!



#35

Quantum Computers

• A quantum computer uses quantum 
effects, such as superposition or 
entanglement, to perform operations on 
data.
– Quantum Computers do not exist (yet).

• Classical Bit: 0 or 1
• Quantum Bit or Qubit: 0 or 1 or quantum 

superposition of 0 and 1
– 3 Bits = exactly one state (= one number 1-8)
– 3 Qubits = up to 8 states simultaneously!
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Quantum Digital Logic Design

• Qubits are manipulated by quantum gates
– Just as AND, OR and NOT gates manipulate bits
– There is a notion of a complete set of gates

• AND, OR and NOT for classical
• Hadamard, Phase Rotation and Controlled Not for 

Q

• Quantum gates are unitary matrices
– Each quantum gate is reversible
– This is not obvious

• One builds quantum circuits out of quantum 
gates
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Quantum Storage
• A quantum register (qregister) holds qubits

– A qregister is described by a wavefunction 
where the coefficients are complex numbers 
whose amplitudes squared are the probabilities 
to measure the qubits in each state ... 

– Complex numbers means the phases can 
constructively and destructively interfere

• Recording or simulating the state of a 
qregister requires an exponential number 
of classical complex numbers
– 3-qubit qregister == 8 complex numbers
– 300-qubit qregister == 1090 > |universe|



#38

Quantum Computation
• Initialize n-qubit qregister to starting values
• Each step: n qubits go through quantum 

gates
– (i.e., are multiplied by unitary matrices)

• Read qregister via quantum measurement
– Yields a random n-bit string
– And destroys the stored state as well

• This sounds bad
– But: run whole program many times (i.e., 

sampling)
– Probability distribution of output string is skewed 

in favor of the right answer
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Probabilistic
• Quantum Computers are probabilistic

– Repeated runs of qcomputer plus majority 
polling of the outputs yields the right answer 
with high probability

• They are not deterministic
– Officially, they can get the “wrong” answer, 

just like that probabilistic program analysis 
from last week
• Exceptions: Deutsch-Jozsa, etc.

– In practice this is not a problem: rerun until 
prob of error is less than prob of earth 
exploding, etc.
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Database Search Problem
• Database Search Problem:

– To Solve: guess random answers and check 
them

– There are n possible answers
– Each guess takes the same time to check

• Example Uses:
– Searching for an entry in an unsorted array
– Guessing your friend's password
– Attacking symmetric ciphers (AES, 3DES)

• Classical Running Time: O(n) linear search
– Average Case: (n+1)/2 guesses to find answer
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Enter Lov Grover in 1996

• Grover's Algorithm
– Quantum algorithm for solving the database 

search problem (i.e., for doing linear search)
– Takes O(√N) time (yes, sqrt(N) time!)

– Uses O(log
2
N) qubits of storage

– Probability of measuring wrong answer: O(1/N)
– Algorithm is optimal

• I will not explain Grover's Algorithm.
• Instead, we will cover Shor's Algorithm.
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Let's Break RSA
• Break RSA == find factors of large integer N
• No known polynomial classical algorithms

– General Number Field Sieve: ~ O(2b)
– b is number of bits in N (e.g., b=512)

• Could use Grover
– Linear search for factors in O(√2b) = O(2b/2) 

time
– Still too slow!

• New Proposed Quantum Approach
– Try all factors in parallel, pick the right one!
– Does this work?
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Itty Bitty Living Space
• Despite popular rumors, quantum computers 

cannot easily “try everything in parallel” 
• Sure, you can try everything in parallel
• But when you measure the outcome, you get 

something random!
• In this case, you'd get a random (non-)divisor
• Which is not what we want!

– Using the power of quantum computing to look for a 
needle in a haystack is not efficient!

• So we must exploit the structure of the problem
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Needles In Haystacks
• Quantum computing can give you a random 

answer back
– So the trick is to make sure that even a random 

answer will help you
– By making sure that all answers have some important 

property that contributes to what you really want to 
know

• Look: if you think about quantum computing in terms of “parallel universes” 
(and whether you do or don’t is up to you), there’s no feasible way to 
detect a single universe that’s different from all the rest. Such a lone voice 
in the wilderness would be drowned out by the vast number of suburb-
dwelling, Dockers-wearing conformist universes. What one can hope to 
detect, however, is a joint property of all the parallel universes together — 
a property that can only be revealed by a computation to which all the 
universes contribute. [ Scott Aaronson ]
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Digression: Periodic Sequences
• Powers of Two: 2, 4, 8, 16, 32, 64, 128, 256, ...

– Not a periodic sequence.

• Powers of Two Mod 15: 2, 4, 8, 1, 2, 4, 8, 1, ...
– Period is 4

• Powers of Two Mod 21: 2, 4, 8, 16, 11, 1, 2, 
4, ...
– Period is 6

• Let N be the product of two primes p * q
– Series: x mod N, x2 mod N, x3 mod N, x4 mod N, ...
– Has period that evenly divides (p-1)(q-1)  [Euler 

~1760]
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Quantum World Series
• Thus if we can find the period of

– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• Then we learn something about the prime 
factors of N!
– In particular, we learn a divisor of (p-1)(q-1)
– Not as good as learning p and q themselves ...
– But if we run it a few times and get several 

random divisors of (p-1)(q-1)
– Then we can put them together to get (p-1)

(q-1)
– And then use some math tricks recover p and q
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Reduction To Nowhere?
• The sequence

– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• Will eventually start repeating, but the 
number of steps before a repeat could be 
O(N)
– And N was already huge!
– Which is why this is not a good classical algorithm
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Captain Quantum

• So let's make a superposition over all of the 
numbers in our sequence:
– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• Then perform some quantum operation 
over all of them to reveal the period

• We're no longer looking for needles in 
haystacks

• The period is a global property of all of the 
numbers in the sequence taken together
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The Key
• The key to quantum algorithms is to make a 

bunch of parallel worlds that all have something 
(part of the right answer) in common.
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Shor's Algorithm

• Let's assume we've made our superposition
– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• So, given a superposition of elements in a 
periodic sequence, how do we extract the 
period?

• We use the Quantum Fourier Transform
– The heart of Shor's Algorithm (1994)

• Reasoning by analogy time!
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Sleepless In Seattle
• Let's say your body functions on a 26-hour cycle
• Then if you had no appointments and good 

window blinds, you might wake up at 8am one 
day, 10am the next day, noon the next day, etc.

• If you were on a 27-hour cycle, it would be 8am, 
11am, 2am, etc.

• So, if I see you waking up at 8am, can I tell what 
kind of cycle you're on? 
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Groundhog Day
• Let's imagine that your bedroom has many clocks 

in it
– Each clock has an hour hand (no minute hand)
– One clock has 26 hours per day
– One clock has 27 hours per day
– One clock has 3 hours per day, etc.
– Each hour is still 60 minutes on all clocks

• Each clock has its own posterboard with a 
thumbtack in it – mounted right below the clock
– When you wake up, you move each thumbtack in the 

direction of its clock's hour hand
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Bedroom Of Doom!

• Three of your clocks: 4-hour, 3-hour, 8-
hour:

X X X
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Bedroom Of Doom! (1pm)

• Let's say the current time is 1pm on all 
clocks.

X X X
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Bedroom Of Doom! (1pm)

• Let's say you're on a 3-hour day, so you 
wake up every three hours. 

• So when next you wake up, it'll be three 
hours later ...

X X X
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Bedroom Of Doom! (4pm)

• So you adjust the clocks

X X X
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Bedroom Of Doom! (4pm)

• So you adjust the clocks

• And move the thumbtacks ...

X X
X
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Bedroom Of Doom! (7pm)

• Wakey Wakey! So you adjust the clocks

• And move the thumbtacks ...

X
X

X
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Bedroom Of Doom! (10pm)

• Wakey Wakey! So you adjust the clocks

• And move the thumbtacks ...

X

X

X
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Bedroom Of Doom! (1am)

• Sigh! So you adjust the clocks

• And move the thumbtacks ...

X

X

X
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Bedroom Of Doom! (4am)

• Sigh! So you adjust the clocks

• How can you tell which clock matches your 
period?

X

X

X
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Periodic Motion
It's Just A Jump To The Left

• If you're on a 3-hour day, the 4-hour clock's 
thumbtack drifts around a little, but every few 
days it returns to the center
– All of the movements cancel each other out!

• On the other hand, from the perspective of the 
3-hour clock you've been waking up at the same 
time each “morning”
– So you keep moving that thumbtack in the same 

direction!

• So just find which thumbtack is farthest from 
the center and you've found the period.
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QFT, QED.
• The Quantum Fourier Transform is a 

linear (unitary) transformation that maps a 
vector of complex numbers to another 
vector of complex numbers

• Input vector has nonzero entries every time 
I wake up, zero entries everywhere else

• Output vector records thumbtack positions
• In the end: it's a linear transform mapping 

quantum state encoding a periodic 
sequence to a quantum state encoding the 
period of the sequence!
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Interference
• In quantum-land, probabilities are always non-

negative but amplitudes may be negative, 
positive or even complex.

• Thus amplitudes corresponding to different ways 
of getting a particular answer can intefere 
destructively and cancel each other out

• In Shor, all periods from all observations (i.e., 
all alternate universes) other than the true one 
cancel each other out. Only for the true period 
do contributions from all observations (i.e., all 
universes) point in the same direction.
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Shor's Algorithm
• On a quantum computer, Shor's Algorithm takes 

O((log N)3) time to factor the integer N
– Recall: best classical time ~O(2logN)

• In 2001, a team at IBM implemented Shor's 
algorithm and factored 15 using 7 qubits
– Experimental realization of Shor's quantum factoring 

algorithm using nuclear magnetic resonance
– “We use seven spin-1/2 nuclei in a molecule as 

quantum bits, which can be manipulated with room 
temperature liquid-state nuclear magnetic resonance 
techniques.”
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Did We Win?

• A normal Turing machine can simulate a 
quantum computer (slowly ...)
– So we do not gain any expressive power
– Quantum computers do not solve the halting 

problem

• But quantum computers sure seem faster!
• The class of problems that can be solved 

efficiently by quantum computers is called 
BQP (bounded error, quantum, polynomial 
time). 
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P = NP ?

• So: “quantum computers can solve NP-
complete problems in polynomial time” ?
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P = NP ?
• Misconception: “quantum computers can solve 

NP-complete problems in polynomial time”
• BQP is suspected to be a superset of P and 

disjoint from NP (this is unknown)
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What Is Quantum Good For?

• BQP contains Integer Factorization
– Believed to be in NP but not in P

• BQP contains Discrete Log
– Believed to be in NP but not in P

• BQP contains Quantum Database Search
– Can give an N2 speedup on any NP-complete 

problem (by searching through all the 
answers), but that's still exponential time

• And that's currently about it.
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Homework

• Final Exam Soon ...


