
#1

AnalysesAnalyses
For The Lazy SuperheroFor The Lazy Superhero

#2

PL Fencing Day

• Friday Dec 4 (unless it rains) @ 4:30pm
• Darden Courtyard; no experience necessary
• I provide gear
• I provide lesson

#3

Final Exam Construction

• No Time Limit
• Closed Book, 2 sides of notes
• High level “take home message” questions

• Email me questions you think are relevant.
• Also, what do you want to hear about on the

last day of class? Any topic!
• Grade predictions mailed out Fri or Sat

– Hint: ...

#4

Debugging Experiment

• Takes about one hour
• Identify fault (or not) in Java code

– How difficult was the code to debug?

• Worth 2 points of extra credit on the final
– ... but still anonymous.

• Research by Zak and Wes

#5

• Monday – Mani's Day

– The Latin days of the week in imperial Rome were named after the planets, which in turn were named after gods (see discussion at WEEK n.). In most
cases the Germanic names have substituted for the Roman god's name that of a comparable one from the Germanic pantheon. In the case of Monday (as
also of Sunday), the name of the planet (as the moon was considered in the classical period) and the god were the same. [OED]

– Monday: Old English Mōnandæg (pronounced [mon.nan.dæg] or [mon.nan.dæj'), meaning "Moon's Day". This is likely based on a translation of the Latin
name Dies Lunae (cf. Romance language versions of the name, e.g., French Lundi, Spanish, Lunes, Romanian Luni, Italian Lunedì). In North Germanic
mythology, the moon is personified as a god; Máni. [Wikipedia]

• Tuesday – Tyr's Day

– ... The sky-god Tiw was originally also a god of war, like the Roman Mars. [OED]

– Tyr (pronounced / t r/;[1] Old Norse: Týr [ty r]) is the god of single combat, victory and heroic glory in Norse mythology, portrayed as a one-handed man. ˈ ɪə ː
Corresponding names in other Germanic languages are Gothic Teiws , Old English Tīw and Old High German Ziu, all from Proto-Germanic *Tîwaz.
[Wikipedia]

• Wednesday – Odin's Day

– The identification of Woden, the highest god of the Germanic pantheon, with the Roman Mercury is already suggested in Tacitus, although he does not give
a Germanic name (Deorum maxime Mercurium colunt, ‘they worship Mercury most of all the gods’, Germania 9); common features between these gods
include eloquence, swiftness, range of travel, and guardianship of the dead. ... The name of Woden (Old English W{omac}den, Old Saxon W{omac}den, Old
High German Wuotan, Old Icelandic Ó{edh}inn) derives < the Germanic base of WOOD adj. + a nasal suffix. [OED]

– Wotan, the High German variant of Wōden, the Continental West Germanic god corresponding to Norse Odin. [Wikipedia]

• Thursday – Thor's Day

– The contemporary name comes from the Old English Þunresdæg, "Thunor's Day"[1][2][3] (with loss of -n-, first in northern dialects, from influence of Old
Norse Þorsdagr, meaning "Thor's Day"). Thunor and Thor are derived from the Proto-Germanic god Thunaraz, god of thunder. [Wikipedia]

• Friday – Frig's Day

– The name of Frig (Old English Fr{imac}g, Old High German Frija, Old Icelandic Frigg, in Icelandic mythology the consort of Odin) is attested in Old English
only in the name of the day of the week ... [OED]

– The name Friday comes from the Old English frīgedæg, meaning the day of Frige the Old English form of Frigg, a West Germanic translation of Latin dies
Veneris, "day (of the planet) Venus." However, in most Germanic languages the day is named after freyja—such as Frīatag in Old High German, Freitag in
Modern German, Freyjudagr in Old Norse, Vrijdag in Dutch, Fredag in Swedish, Norwegian, and Danish—but Freyja and Frigg are frequently identified with
each other. [Wikipedia]

• Sunday – Sun's Day

– Sunday: Old English Sunnandæg (pronounced [sun.nan.dæg] or [sun.nan.dæj), meaning "Sun's Day". ... In both West Germanic and North Germanic
mythology the sun is personified as a goddess; Sunna/Sól. [Wikipedia]

• General:

– Saturday: the only day of the week to retain its Roman origin in English, named after the Roman god Saturn associated with the Titan Cronus, father of
Zeus and many Olympians.

#6

Random InterpretationRandom Interpretation
Sumit Gulwani Sumit Gulwani && George Necula George Necula

#7

Probabilistically Sound
Program Analysis!

• Sound program analysis is hard (Rice’s Theorem)
• PL researchers usually pay in terms of

– Loss of completeness or precision
– Complicated algorithms
– Long running times

• Can we pay in terms of soundness instead?
– Basically, soundness = correctness
– Judgments are unsound with low probability
– We can predict and control the probability of error
– Can gain simplicity and efficiency

#8

Discovering Affine Equalities
• Given a program (control-flow graph) …
• Discover equalities of the form 2y + 3z = 7

– Compiler Optimizations
– Loop Invariants
– Translation Validation

• There exist polynomial time deterministic
algorithms [Karr 76]
– involving expensive operations - O(n4)

• We present a randomized algorithm
– as complete as the deterministic algorithms
– but faster - O(n2)
– and simpler (almost as simple as an interpreter)

#9

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

T

T F

F

Example 1

•Random testing will have
to exercise all the 4 paths to
verify the assertions

•Our algorithm is similar to
random testing

• However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

#10

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

T

T F

F

Example 1

•Random testing will have
to exercise all the 4 paths to
verify the assertions

•Our algorithm is similar to
random testing

• However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

#11

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

T

T F

F

Example 1

•Random testing will have
to exercise all the 4 paths to
verify the assertions

•Our algorithm is similar to
random testing

• However, we execute the
program once, in a way that
it captures the “effect” of
all the paths

•Exponential work, linear
time! (P=NP?)

#12

Idea #1: Affine Join Operation
• Execute both the branches
• Combine the values of the variables at joins

using the affine join operation ©w for some
randomly chosen w

v1 ©w v2 = w £ v1 + (1-w) £ v2

a := 2; b := 3; a := 4; b := 1;

a = 2 ©7 4 = -10
b = 3 ©7 1 = 15

(w = 7)

#13

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#14

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#15

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#16

a := 0; b := 1; a := 1; b := 0;

c := b – a;
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

a = -4, b = 5
c = -39, d = 39

c := 2a + b;
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Example 1
• Choose a random weight for
each join independently.

• All choices of random
weights verify the first
assertion

• Almost all choices
contradict the second
assertion.

#17

Geometric Interpretation of the
Affine Join operation

x

y

x + y = 1

x = 2

(x = 0, y = 1)

(x = 1, y = 0)

: State before the join

: State after the join

 satisfies all the affine
relationships that are
satisfied by both
(e.g. x + y = 1, z = 0)

Given any relationship
that is not satisfied by
any of (e.g. x=2),
also does not satisfy
it with high probability

#18

Example 2

a := x + y

 b := a b := 2x

assert (b = 2x)

T F
if (x = y)

•Idea #1 is not
enough

•We need to make
use of the
conditional x=y on
the true branch

#19

Idea #2: Adjust Operation
• Execute multiple runs of the program in parallel

• “Sample” = Collection of states at each program
point

• “Adjust” the sample before a conditional (by
taking affine joins of the states in the sample)
such that
– Adjustment preserves original relationships
– Adjustment satisfies the equality in the conditional

• Use adjusted sample on the true branch

#20

Geometric Interpretation of the
Adjust Operation

Original Point

Conditional
(e2=0)

Adjusted Point

(lies on e1=0)

(lies on e1=0 Å e2=0)

(examples show

“x=0” for simplicity)

#21

The Randomized Interpreter R

x := e
S

S’

e = 0 ?True False
S’

S1 S2

S1 S2

S

S1 = Adjust(S’,e)

S2 = S’

 Si = S1
i ©wi S2

i
Si = S’i[x Ã e]

#22

 Completeness and soundness of R

• We compare the randomized interpreter R
with a suitable actual interpreter A
– Actual Interpreter A would be too slow (etc.) to

use in real life!

• R mimics A with high probability
– R is as complete as A
– R is sound with high probability

#23

Soundness Theorem
• If A) g = 0, then with high probability

R ² g = 0

• Error probability ·
– b: number of branches
– j: number of joins
– d: size of the field
– r: number of points in the sample

• If j = b = 10, r = 15, d ¼ 232, then
 error probability ·

#24

Conclusions, Wessy Summary

• Randomization can help achieve simplicity
and efficiency at the expense of making
soundness probabilistic

• Has been extended to handle uninterpreted
function symbols, interprocedural analyses,
randomized decision procedures for theorem
proving, combined abstract interpreters, …

• May help with complicated security analyses
• Go to grad school!

#25

Q: TV (070 / 842)

•This 1993-1998 Emmy Award-
winning CBS series featured Jane
Seymour as Dr. Mike. It was
originally targeted at the 18-
to-40 demographic but ended up
viewed predominantly by women
aged 40 or older.

#26

Q: Music (123 / 842)

• Name the song: "He was a famous
trumpet man from old Chicago way.
He had a boogie style that no one
else could play. He was the top
man at his craft, but then his
number came up and he was gone
with the draft. He's in the army
now a-blowin' reveille."

#27

Q: Music (205 / 842)

•This 19th century Russian
composer created the piano
suite Pictures At An Exhibition.
It includes a "Tuileries" theme
depicting children playing in a
garden near the Louvre.

#28

Q: Movies (267 / 842)

•Name the movie described
below, its heroine and its
star. This 1979 Ridley Scott
movie began the first major
American film series with a
female action hero.

#29

Q: Movies (322 / 842)

•In this 1984 movie one of
the villains is the Stay Puft
Marshmallow Man.

#30

Q: Movies (374 / 842)

•In this 1989 family
comedy the children of
Rick Moranis spend most
of the day playing with
bugs in the yard.

#31

Quantum ComputingQuantum Computing
1/21/2

#32

Lies
• This lecture will gloss over most details.

• You actually know more than I know, I just
don't have time to get into it.

• Math Class: Intro To Quantum Computing

#33

One-Slide Summary
• A quantum computer manipulates

quantum bits; such qubits can represent a
superposition of possible states.

• Quantum computers are probabilistic.
Grover's Algorithm (for linear search in
sub-linear time) and Shor's Algorithm (for
factoring integers in polylog time) are
common quantum algorithms.

• When you use a quantum computer to “try
everything in parallel” you get back a
random answer.

#34

Theory and Practice

• Quantum Computers do not yet exist
• But we can still talk about them in theory
• Serious experimental work remains to be

done!

#35

Quantum Computers

• A quantum computer uses quantum
effects, such as superposition or
entanglement, to perform operations on
data.
– Quantum Computers do not exist (yet).

• Classical Bit: 0 or 1
• Quantum Bit or Qubit: 0 or 1 or quantum

superposition of 0 and 1
– 3 Bits = exactly one state (= one number 1-8)
– 3 Qubits = up to 8 states simultaneously!

#36

Quantum Digital Logic Design

• Qubits are manipulated by quantum gates
– Just as AND, OR and NOT gates manipulate bits
– There is a notion of a complete set of gates

• AND, OR and NOT for classical
• Hadamard, Phase Rotation and Controlled Not for

Q

• Quantum gates are unitary matrices
– Each quantum gate is reversible
– This is not obvious

• One builds quantum circuits out of quantum
gates

#37

Quantum Storage
• A quantum register (qregister) holds qubits

– A qregister is described by a wavefunction
where the coefficients are complex numbers
whose amplitudes squared are the probabilities
to measure the qubits in each state ...

– Complex numbers means the phases can
constructively and destructively interfere

• Recording or simulating the state of a
qregister requires an exponential number
of classical complex numbers
– 3-qubit qregister == 8 complex numbers
– 300-qubit qregister == 1090 > |universe|

#38

Quantum Computation
• Initialize n-qubit qregister to starting values
• Each step: n qubits go through quantum

gates
– (i.e., are multiplied by unitary matrices)

• Read qregister via quantum measurement
– Yields a random n-bit string
– And destroys the stored state as well

• This sounds bad
– But: run whole program many times (i.e.,

sampling)
– Probability distribution of output string is skewed

in favor of the right answer

#39

Probabilistic
• Quantum Computers are probabilistic

– Repeated runs of qcomputer plus majority
polling of the outputs yields the right answer
with high probability

• They are not deterministic
– Officially, they can get the “wrong” answer,

just like that probabilistic program analysis
from last week
• Exceptions: Deutsch-Jozsa, etc.

– In practice this is not a problem: rerun until
prob of error is less than prob of earth
exploding, etc.

#40

Database Search Problem
• Database Search Problem:

– To Solve: guess random answers and check
them

– There are n possible answers
– Each guess takes the same time to check

• Example Uses:
– Searching for an entry in an unsorted array
– Guessing your friend's password
– Attacking symmetric ciphers (AES, 3DES)

• Classical Running Time: O(n) linear search
– Average Case: (n+1)/2 guesses to find answer

#41

Enter Lov Grover in 1996

• Grover's Algorithm
– Quantum algorithm for solving the database

search problem (i.e., for doing linear search)
– Takes O(√N) time (yes, sqrt(N) time!)

– Uses O(log
2
N) qubits of storage

– Probability of measuring wrong answer: O(1/N)
– Algorithm is optimal

• I will not explain Grover's Algorithm.
• Instead, we will cover Shor's Algorithm.

#42

Let's Break RSA
• Break RSA == find factors of large integer N
• No known polynomial classical algorithms

– General Number Field Sieve: ~ O(2b)
– b is number of bits in N (e.g., b=512)

• Could use Grover
– Linear search for factors in O(√2b) = O(2b/2)

time
– Still too slow!

• New Proposed Quantum Approach
– Try all factors in parallel, pick the right one!
– Does this work?

#43

Itty Bitty Living Space
• Despite popular rumors, quantum computers

cannot easily “try everything in parallel”
• Sure, you can try everything in parallel
• But when you measure the outcome, you get

something random!
• In this case, you'd get a random (non-)divisor
• Which is not what we want!

– Using the power of quantum computing to look for a
needle in a haystack is not efficient!

• So we must exploit the structure of the problem

#44

Needles In Haystacks
• Quantum computing can give you a random

answer back
– So the trick is to make sure that even a random

answer will help you
– By making sure that all answers have some important

property that contributes to what you really want to
know

• Look: if you think about quantum computing in terms of “parallel universes”
(and whether you do or don’t is up to you), there’s no feasible way to
detect a single universe that’s different from all the rest. Such a lone voice
in the wilderness would be drowned out by the vast number of suburb-
dwelling, Dockers-wearing conformist universes. What one can hope to
detect, however, is a joint property of all the parallel universes together —
a property that can only be revealed by a computation to which all the
universes contribute. [Scott Aaronson]

#45

Digression: Periodic Sequences
• Powers of Two: 2, 4, 8, 16, 32, 64, 128, 256, ...

– Not a periodic sequence.

• Powers of Two Mod 15: 2, 4, 8, 1, 2, 4, 8, 1, ...
– Period is 4

• Powers of Two Mod 21: 2, 4, 8, 16, 11, 1, 2,
4, ...
– Period is 6

• Let N be the product of two primes p * q
– Series: x mod N, x2 mod N, x3 mod N, x4 mod N, ...
– Has period that evenly divides (p-1)(q-1) [Euler

~1760]

#46

Quantum World Series
• Thus if we can find the period of

– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• Then we learn something about the prime
factors of N!
– In particular, we learn a divisor of (p-1)(q-1)
– Not as good as learning p and q themselves ...
– But if we run it a few times and get several

random divisors of (p-1)(q-1)
– Then we can put them together to get (p-1)

(q-1)
– And then use some math tricks recover p and q

#47

Reduction To Nowhere?
• The sequence

– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• Will eventually start repeating, but the
number of steps before a repeat could be
O(N)
– And N was already huge!
– Which is why this is not a good classical algorithm

#48

Captain Quantum

• So let's make a superposition over all of the
numbers in our sequence:
– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• Then perform some quantum operation
over all of them to reveal the period

• We're no longer looking for needles in
haystacks

• The period is a global property of all of the
numbers in the sequence taken together

#49

The Key
• The key to quantum algorithms is to make a

bunch of parallel worlds that all have something
(part of the right answer) in common.

#50

Shor's Algorithm

• Let's assume we've made our superposition
– x mod N, x2 mod N, x3 mod N, x4 mod N, ...

• So, given a superposition of elements in a
periodic sequence, how do we extract the
period?

• We use the Quantum Fourier Transform
– The heart of Shor's Algorithm (1994)

• Reasoning by analogy time!

#51

Sleepless In Seattle
• Let's say your body functions on a 26-hour cycle
• Then if you had no appointments and good

window blinds, you might wake up at 8am one
day, 10am the next day, noon the next day, etc.

• If you were on a 27-hour cycle, it would be 8am,
11am, 2am, etc.

• So, if I see you waking up at 8am, can I tell what
kind of cycle you're on?

#52

Groundhog Day
• Let's imagine that your bedroom has many clocks

in it
– Each clock has an hour hand (no minute hand)
– One clock has 26 hours per day
– One clock has 27 hours per day
– One clock has 3 hours per day, etc.
– Each hour is still 60 minutes on all clocks

• Each clock has its own posterboard with a
thumbtack in it – mounted right below the clock
– When you wake up, you move each thumbtack in the

direction of its clock's hour hand

#53

Bedroom Of Doom!

• Three of your clocks: 4-hour, 3-hour, 8-
hour:

X X X

#54

Bedroom Of Doom! (1pm)

• Let's say the current time is 1pm on all
clocks.

X X X

#55

Bedroom Of Doom! (1pm)

• Let's say you're on a 3-hour day, so you
wake up every three hours.

• So when next you wake up, it'll be three
hours later ...

X X X

#56

Bedroom Of Doom! (4pm)

• So you adjust the clocks

X X X

#57

Bedroom Of Doom! (4pm)

• So you adjust the clocks

• And move the thumbtacks ...

X X
X

#58

Bedroom Of Doom! (7pm)

• Wakey Wakey! So you adjust the clocks

• And move the thumbtacks ...

X
X

X

#59

Bedroom Of Doom! (10pm)

• Wakey Wakey! So you adjust the clocks

• And move the thumbtacks ...

X

X

X

#60

Bedroom Of Doom! (1am)

• Sigh! So you adjust the clocks

• And move the thumbtacks ...

X

X

X

#61

Bedroom Of Doom! (4am)

• Sigh! So you adjust the clocks

• How can you tell which clock matches your
period?

X

X

X

#62

Periodic Motion
It's Just A Jump To The Left

• If you're on a 3-hour day, the 4-hour clock's
thumbtack drifts around a little, but every few
days it returns to the center
– All of the movements cancel each other out!

• On the other hand, from the perspective of the
3-hour clock you've been waking up at the same
time each “morning”
– So you keep moving that thumbtack in the same

direction!

• So just find which thumbtack is farthest from
the center and you've found the period.

#63

QFT, QED.
• The Quantum Fourier Transform is a

linear (unitary) transformation that maps a
vector of complex numbers to another
vector of complex numbers

• Input vector has nonzero entries every time
I wake up, zero entries everywhere else

• Output vector records thumbtack positions
• In the end: it's a linear transform mapping

quantum state encoding a periodic
sequence to a quantum state encoding the
period of the sequence!

#64

Interference
• In quantum-land, probabilities are always non-

negative but amplitudes may be negative,
positive or even complex.

• Thus amplitudes corresponding to different ways
of getting a particular answer can intefere
destructively and cancel each other out

• In Shor, all periods from all observations (i.e.,
all alternate universes) other than the true one
cancel each other out. Only for the true period
do contributions from all observations (i.e., all
universes) point in the same direction.

#65

Shor's Algorithm
• On a quantum computer, Shor's Algorithm takes

O((log N)3) time to factor the integer N
– Recall: best classical time ~O(2logN)

• In 2001, a team at IBM implemented Shor's
algorithm and factored 15 using 7 qubits
– Experimental realization of Shor's quantum factoring

algorithm using nuclear magnetic resonance
– “We use seven spin-1/2 nuclei in a molecule as

quantum bits, which can be manipulated with room
temperature liquid-state nuclear magnetic resonance
techniques.”

#66

Did We Win?

• A normal Turing machine can simulate a
quantum computer (slowly ...)
– So we do not gain any expressive power
– Quantum computers do not solve the halting

problem

• But quantum computers sure seem faster!
• The class of problems that can be solved

efficiently by quantum computers is called
BQP (bounded error, quantum, polynomial
time).

#67

P = NP ?

• So: “quantum computers can solve NP-
complete problems in polynomial time” ?

#68

P = NP ?
• Misconception: “quantum computers can solve

NP-complete problems in polynomial time”
• BQP is suspected to be a superset of P and

disjoint from NP (this is unknown)

#69

What Is Quantum Good For?

• BQP contains Integer Factorization
– Believed to be in NP but not in P

• BQP contains Discrete Log
– Believed to be in NP but not in P

• BQP contains Quantum Database Search
– Can give an N2 speedup on any NP-complete

problem (by searching through all the
answers), but that's still exponential time

• And that's currently about it.

#70

Homework

• Final Exam Soon ...

