et

COREMTERFAHE

Ifa

CHLE

EiiDAw

Tk EHD

ERTT el

BRI

L

SOC Lah FRENCE

LITTLE

EWE g oo i T A
'-""-"""""-;1'.'.-:.'.
ANTREL .EE...T"
BT R TR

B EnEa

ME DI RE
AEAT AN

EFAR

CHPELS

EmbOR CHEESE

Hor A AT
MELyY SAMEFELLS
DRBOUTI

Vel BHLA

MORERRET

RANT A WEMA,

AAGE N THA

CLERA
BCEL ARD

Wi i s

L LR

OrHfLAAK

WA cascan| FERU

B

FLHIETAN

HWAFPY LERD
B F i,
NCIRGOR P o

[N]

ETHOPGA

BRAE AN

ANTARCTIC EMPFRE

) ML

WOt
EARTH

Fi R Gl A B LA

HELS&LUS

JEF RN

WAL AT ERA

GERAMANT
= EY WA AR
AUETHLE

STUTH HORER
IO, LANID
Ha T seEE

AF AN DETH EOREA
PR ERG

[k A
i

naRaLADEEH
FIDORE S
LA S
BOLMA

B T Svyaiga
CaADRIFY
Py T

Ul pmasion

ALENTREL LK

(LR

(How Not To Do
Global Optimizations

One-Slide Summary

e A global optimization changes an entire
method (consisting of multiple basic blocks).

 We must be conservative and only apply
global optimizations when they preserve the
original semantics.

 We use global flow analyses to determine if
it is OK to apply an optimization.

e Flow analyses are built out of simple transfer
functions and can work forwards or
backwards.

#2

Lecture Outline

e Global flow analysis

e Global constant
propagation

e Liveness analysis

- The Boston Globe - -

INCREDIBLE... NO NEWS

All around the world nothing happened

Rl o T T p——
o P T -

Today like yesterday

Inside Today

Nothing to tell Nothing to nothing
NO N -
NEWS
Boston.co -

m
LT

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation

- Dead code elimination
X :=3 X :=3

Yi=Z*W - Yi=Z*W - Yi=Z*W
Qi =X+Y Q:i=3+Y Q:=3+Y

&0, WHEN You
ST CRIGINAL,
YOoU ACTUALLY
MEAN., 7
MORE OF THE

ShE, BUT
DIFFERENT.

T MUST BE
HEW AND GROUND
BREMCMG, YET
FOLLOW THE SAME
Vision AND PROTO-
COoLS | ESTABLICHED
DECADES A0,

..BUT HoT Too
ORIEAL | CANT
MAKE SURE “fou

PONT EMBARRASS

YOUR THESIS MUST
BE AN ORIGIHAL
PECE OF WoRk,

#4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X:=3
B>0
Yi=Z+W Yi=0

#5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X:=3
B>0
Yi=Z+W Yi=0

#6

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X:=3
B>0
Yi=Z+W Yi=0

#7

Correctness

e How do we know it is OK to globally
propagate constants?

e There are situations where it is incorrect:

‘,‘
B>0

Yi=Z+W Yi=0

Correctness (Cont.)

To replace a use of x by a constant k we must
know this correctness condition:

On every path to the use of x, the last
assignment to x is x :=k **

Test:

1. What impertant event Yook
place on December 16, 17737

I do Not BELIEVE iM LiNEAR
TiME. THERE 1% Mo Past and
futuRE: all 15 ONE, aMd
EXistEMCE iM HE YEMPoRal SEMSE
i% IRLUSeRY, THS QUESHOoN,
HEREFoRE, 15 MEAN|NGLESS and
MpossiBLE Yo ANSER .

qlfr%
L

I .ﬂ*ﬁi‘

{ ml.Eu. M DOUBT,
'1 ALl TEEMS
hHT:I DEFIHITIONS

Example 1 Revisited

#10

Example 2 Revisited

Y=Z+W

T
Yi=0
:g::42 /

#11

Discussion

e The correctness condition is not trivial to
check

e “All paths” includes paths around loops and
through branches of conditionals

e Checking the condition requires global
analysis
- Global = an analysis of the entire control-flow
graph for one method body

#12

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property
P at a particular point in program execution

- Proving P at any point requires knowledge of the
entire method body

- Property P is typically undecidable!

i i Word cannot edit the Unknown.

Undecidability
of Program Properties

e Rice’s Theorem: Most interesting dynamic
properties of a program are undecidable:
- Does the program halt on all (some) inputs?
e This is called the halting problem

- Is the result of a function F always positive?
e Assume we can answer this question precisely

« Take function H and find out if it halts by testing function F(x) =
{ H(x); return 1; } whether it has positive result

e Contradition!
e Syntactic properties are decidable!
- e.g., How many occurrences of “x” are there?

e Programs without looping are also decidable!

#14

Conservative Program Analyses

e S0, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

e Itis OK to b conservative.

g

#15

Conservative Program Analyses

e S0, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

It is OK to be conservative. If the optimization
requires P to be true, then want to know either

- P is definitely true
- Don’t know if P is true

e Let's call this truthiness)
i
(\ji

. \:\‘

\

" Truthiness

Conservative Program Analyses

So, we cannot tell for sure that “x” is always 3
- Then, how can we apply constant propagation?

It is OK to be conservative. If the optimization
requires P to be true, then want to know either

- P is definitely true
- Don’t know if P is true

It is always correct to say “don’t know”
- We try to say don’t know as rarely as possible

All program analyses are conservative

#17

Global Optimization: Review

X:=3

B>0
— —
=Z+W Y:=0

#18

Global Optimization: Review

X:=3

X:=3
B>0
— — —
=Z+W Y = Yi=Z+W
X:i=4

B>0
—
Y

A =

2*X

=0

#19

Global Optimization: Review

X:=3 X 3|
B>0 AB>OJ
— — — —
=Z+W Y:=0 Yi=Z+W Yi=0
\/ X = 4 /
A=2%*3 =>.>L
Ai=2*3 y

e To replace a use of x by a constant k we
must know that:

On every path to the use of x, the last
assignment to x is x ;= k **

#20

Review

e The correctness condition is hard to check

o Checking it requires global analysis

- An analysis of the entire control-flow graph for
one method body

« We said that was impossible, right?

I CAN COME BACK LATER
IF YOU NEED TIME TO
CONCOCT ADDITIONAL

UNINFORMED
CRITICISMS.

\ 17

o W [~

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

THIS DESIGN WILL
MEVER LJORK IN
THE REAL WORLD.

J
T/

CI""""""
R §
J 3 gl JI | i ! I
© Scott Adams, Inc./Dist. by UFS, Inc.

2008 Scott Adams, Inc./Dist by UFS, Ins.

wwnardilbert.com scotindama®aol. com

3
3

#21

Global Analysis

e Global dataflow analysis is a standard
technique for solving problems with these
characteristics

e Global constant propagation is one example
of an optimization that requires global
dataflow analysis

#22

Global Constant Propagation

e Global constant propagation can be
performed at any point where ** holds

e Consider the case of computing ** for a single
variable X at all program points

 Valid points cannot hide!
« We will find you!

- (sometimes)

DISGUISE SKILL

Global Constant Propagation

« To make the problem precise, we associate
one of the following values with X at every
program point

(Cont.)

value

interpretation

#

This statement is
not reachable

X = constant c

Don’t know if X is
a constant

#24

Example

Get out a piece of paper. Let's fill in these blanks now.

— X=%*
X:=3 — x-
B>0
X= — «— X =

Recall: # = not reachable, ¢ = constant, * = don't know.

#25

X

Example Answers

#26

Using the Information

e Given global constant information, it is easy
to perform the optimization

- Simply inspect the x = ? associated with a
statement using x

- If x is constant at that point replace that use of x
by the constant

e But how do we compute the properties x = ?

#27

The ldea

The analysis of a complicated program can
be expressed as a combination of simple
rules relating the change in information

between adjacent statements

SMETMES T FREEL LWWE QUR
LIFE HAS GOTTEN TOO COMAL-
CATED,. THAT WEVE ACCUMIALMTED

WELL, THOREM SA1S, " SIMPLIFY,
SIMPLIFY." MAR{BE wE NEED

Explanation

e The idea is to “push” or “transfer”
information from one statement to the next

e For each statement s, we compute
information about the value of x immediately
before and after s

C..(x,s) = value of x before s

C . .(x,s) = value of x after s

out

#29

Transfer Functions

e Define a transfer function that transfers
information from one statement to another

#30

Rule 1

| s

S
l — X=#

C,.(X,s)=# 1fC (x,s)=#

Recall: # = “unreachable code”

#31

Rule 2

X
N

X
o

C...(X, x :=c) =c if cis a constant

#32

C..(x, x:=1(..))="

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 5, but we won't even try!

out

#33

Rule 4

#34

The Other Half

e Rules 1-4 relate the in of a statement to the out
of the same statement

- they propagate information across statements

 Now we need rules relating the out of one
statement to the in of the successor statement

- to propagate information forward across CFG edges

e In the following rules, let statement s have
immediate predecessor statements p.,...,p.

#35

if C_.(x, p;) =* for some i, then C_(x, s) ="

#36

if Co(X, p;)) =c and C (X, p;)=d and d#c
thenC_(x,s)="

#37

if C_.(x, p;) =c or# for all i,
then C. (X, s) =c

#38

Rule 8

xX=# X=#

X=# X

S

o~

if C_.(x, p;) =# foralli,
then C (x,s) =#

#39

An Algorithm

For every entry s to the program, set
C.(x,s)="

Set C. (%, s) = C_.(x, s) = # everywhere else

Repeat until all points satisfy 1-8:

Pick s not satisfying 1-8 and update using the
appropriate rule

#40

The Value #

e To understand why we need #, look at a loop

X
X:i=3 X

#41

The Value #

e To understand why we need #, look at a loop

#42

The Value # (Cont.)

e Because of cycles, all points must have values
at all times during the analysis

e Intuitively, assigning some initial value allows
the analysis to break cycles

o The initial value # means “so far as we know,
control never reaches this point”

#43

Sometimes
all paths
lead to the
same place.

Thus you
need #.

#44

We are done
when all rules
are satisfied !

#45

X:=3 Let's do it on paper!
B>0

Another Example

Yi=Z+W

#46

Another Example: Answer

X=*

— Xz 3

X:%3\A/X:;¥,X* R

—TX= % 4 Must continue

until all rules

are satisfied !

#47

Orderings

« We can simplify the presentation of the
analysis by ordering the values

< Cc < *

Drawing a picture with “lower” values drawn
lower, we get

#48

Orderings (Cont.)

e *is the greatest value, # is the least
- All constants are in between and incomparable

e Let (ub be the least-upper bound in this
ordering

e Rules 5-8 can be written using lub:
C..(X,s)=lub { C_,(X, p) | pis a predecessor of s }

#49

Termination

e Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

e The use of lub explains why the algorithm
terminates

- Values start as # and only increase
- # can change to a constant, and a constant to *
- Thus, C_(x, s) can change at most twice

#50

Number Crunching

The algorithm is polynomial in program size:
Number of steps =

Number of C_(....) values changed * 2 =
(Number of program statements)” * 2

#51

Liveness Analysis

Once constants have been globally propagated, we
would like to eliminate dead code

X:=3
B>0

A=2*X
After constant propagation, X := 3 is dead
(assuming this is the entire CFG)

#52

Live and Dead

e The first value of x is

X:=3
dead (never used)
e The second value of x is N
. X := 4
live (may be used)
 Liveness is an important N
concept ~

#53

Liveness

A variable x is live at statement s if
- There exists a statement s’ that uses x

- There is a path from s to s’

- That path has no intervening assignment to x

#54

Global Dead Code Elimination

e A statement x := ... is dead code if x is dead
after the assignment

e Dead code can be deleted from the program
e But we need liveness information first . . .

Should have put more points in it, eh?

#55

Computing Liveness

 We can express liveness in terms of
information transferred between adjacent
statements, just as in constant propagation

e Liveness is simpler than constant propagation,
since it is a boolean property (true or false)

#56

Liveness Rule 1

L. (X, s) = true if s refers to x on the rhs

#57

Liveness Rule 2

L. (x, x :=e) = false if e does not refer to x

#58

Liveness Rule 3

J' «— X-=-a

S
l ~— X-=-a

L. (X, s) = L,.(x, s) if s does not refer to x

#59

Liveness Rule 4

P e

/\X: i

X=?2 X=2? X = true X=2

L..(x, p)= O{L.(x,s) | sasuccessor of p }

#60

Algorithm

e Letall L _(...) = false initially

o Repeat process until all statements s satisfy
rules 1-4 .

Pick s where one of 1-4 does not hold and update
using the appropriate rule

#61

Liveness Example

L(X) = false
Xim L(X) = fal.
— L(X) = false
B>0

L(X) = false N) = false

Yi=Z+W Y:=0 ‘:i(X)—'fa/s‘e

L(X) = false \A) = false

X 1= X * X L(X)zfalse
+~—L(X) = fals
i 4 (X) = false
“— L(X) = false

A<B

“~— L(X) = false

#62

Liveness Example Answers

X:=3

L(X) = false

—L(X) = f 0)§e true

B>0

Yi=Z+W

L(X) = fq&e er) = ngse true

—L(X)-= fq>§e true

L(X) = f%e #'V_\

Yi=0

/LX :
Dead code

X

— L(X) = foke true
— L(X) = false

—L(X) = fose r

= fake true

—1(X) = folse

#63

Liveness Example Answers

Also dead code?—|

X:=3

L(X) = false

—L(X) = f 0)§e true

B>0

Yi=Z+W

L(X) = fq&e er) = ngse true

—L(X)-= fq>§e true

L(X) = f%e fFV'\

Yi=0

/LX :
Dead code

X

— L(X) = foke true
— L(X) = false

—L(X) = fose r

= fake true

—1(X) = folse

#64

Termination

e A value can change from false to true, but not
the other way around

e Each value can change only once, so
termination is guaranteed

e Once the analysis is computed, it is simple to
eliminate dead code

#65

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is
pushed from outputs back towards inputs

#66

Analysis Analysis

e There are many other global flow analyses

e Most can be classified as either forward or
backward

e Most also follow the methodology of local
rules relating information between adjacent
program points

#67

Homework

e WA6 Due next
e Read chapter 7.7

- Optional David Bacon article

e Midterm 2 - Tue Nov 24

#68

