
#1

Operational SemanticsOperational Semantics

#2

One-Slide Summary

• Operational semantics are a precise way of
specifying how to evaluate a program.

• A formal semantics tells you what each
expression means.

• Meaning depends on context: a variable
environment will map variables to memory
locations and a store will map memory
locations to values.

#3

Lecture Outline: OpSem

• Motivation

• Notation

• The Rules
– Simple Expressions
– while
– new
– dispatch

#4

Motivation
• We must specify for every Cool expression

what happens when it is evaluated
– This is the meaning of an expression

• The definition of a programming language:
– The tokens ⇒ lexical analysis

– The grammar ⇒ syntactic analysis

– The typing rules ⇒ semantic analysis

– The evaluation rules ⇒ interpretation
(also: hints for compilation)

#5

Evaluation Rules So Far
• So far, we specified the evaluation rules intuitively

– We described how dynamic dispatch behaved in words
(e.g., “just like Java”)

– We talked about scoping, variables, arithmetic
expressions (e.g., “they work as expected”)

• Why isn’t this description good enough?

#6

Assembly Language
Description of Semantics

• We might just tell you how to compile it
– (but that would be helpful ...)

• But assembly-language descriptions of
language implementation have too many
irrelevant details
– Which way the stack grows
– How integers are represented on a particular

machine
– The particular instruction set of the architecture

• We need a complete but not overly restrictive
specification

#7

Programming Language Semantics

• There are many ways to specify programming
language semantics

• They are all equivalent but some are more
suitable to various tasks than others

• Operational semantics
– Describes the evaluation of programs on an

abstract machine
– Most useful for specifying implementations
– This is what we will use for Cool

#8

Other Kinds of Semantics

• Denotational semantics
– The meaning of a program is expressed as a

mathematical object
– Elegant but quite complicated

• Axiomatic semantics
– Useful for checking that programs satisfy certain

correctness properties
• e.g., that the quick sort function sorts an array

– The foundation of many program verification
systems

#9

Introduction to
Operational Semantics

• Once again we introduce a formal notation
– Using logical rules of inference, just like typing

• Recall the typing judgment
Context ` e : T

(in the given context, expression e has type T)

• We try something similar for evaluation
Context ` e : v

(in the given context, expression e evaluates to
value v)

#10

Example Operational Semantics
Inference Rule

• In general the result of evaluating an
expression depends on the result of
evaluating its subexpressions

• The logical rules specify everything that is
needed to evaluate an expression

Context ` e1 + e2 : 12

Context ` e1 : 5
Context ` e2 : 7

#11

Aside
• The operational semantics inference rules for

Cool will become quite complicated
– i.e., many hypotheses

• This may initially look daunting
• Until you realize that the opsem rules specify

exactly how to build an interpreter
• That is, every rule of inference in this lecture

is pseudocode for an interpreter
– So walking through the opsem (and thinking “I must

generate code to implement this”) is a PA5 hint.

#12

• It might be
tempting to
protest this
excursion into
Theory

• But I assert it
will come in
handy very soon!

#13

What Contexts Are Needed?

• Contexts are needed to handle variables
• Consider the evaluation of y Ã x + 1

– We need to keep track of values of variables
– We need to allow variables to change their values

during the evaluation

• We track variables and their values with:
– An environment : tells us at what address in

memory is the value of a variable stored
– A store : tells us what is the contents of a

memory location

#14

What Contexts Are Needed?

• Contexts are needed to handle variables
• Consider the evaluation of y Ã x + 1

– We need to keep track of values of variables
– We need to allow variables to change their values

during the evaluation

• We track variables and their values with:
– An environment : tells us at what address in

memory is the value of a variable stored
– A store : tells us what is the contents of a

memory location

Remind me – why do we need a
separate store and environment?

Are those compiler notions?
Which is static? Which

is dynamic?

#15

Variable Environments

• A variable environment is a map from
variable names to locations

• Tells in what memory location the value of a
variable is stored
– Locations = Memory Addresses

• Environment tracks in-scope variables only
• Example environment:

E = [a : l1, b : l2]
• To lookup a variable a in environment E we

write E(a)

#16

 Lost?

• Environments may
seem hostile and
unforgiving

• But soon they'll feel
just like home!

• Names ! Locations

#17

Stores
• A store maps memory locations to values
• Example store:

S = [l1 ! 5, l2 ! 7]

• To lookup the contents of a location l1 in store
S we write S(l1)

• To perform an assignment of 12 to location l1
we write S[12/l1]
– This denotes a new store S’ such that

S’(l1) = 12 and S’(l) = S(l) if l ≠ l1

#18

• Avoid
mistakes in
your stores!

• Locations !
Values

#19

Cool Values

• All values in Cool are objects
– All objects are instances of some class (the

dynamic type of the object)

• To denote a Cool object we use the notation
X(a1 = l1, …, an = ln) where
– X is the dynamic type of the object

– ai are the attributes (including those inherited)

– li are the locations where the values of attributes
are stored

#20

Cool Values (Cont.)

• Special cases (without named attributes)
Int(5) the integer 5
Bool(true) the boolean true
String(4, “Cool”) the string “Cool” of length 4

• There is a special value void that is a member
of all types
– No operations can be performed on it
– Except for the test isvoid
– Concrete implementations might use NULL here

#21

Operational Rules of Cool

• The evaluation judgment is
so, E, S ` e : v, S’

 read:
– Given so the current value of the self object
– And E the current variable environment
– And S the current store
– If the evaluation of e terminates then
– The returned value is v
– And the new store is S’

#22

Notes
• The “result” of evaluating an expression is

both a value and a new store
• Changes to the store model side-effects

– side-effects = assignments to variables
• The variable environment does not change
• Nor does the value of “self”
• The operational semantics allows for non-

terminating evaluations
• We define one rule for each kind of

expression

#23

Operational Semantics for
Base Values

• No side effects in these cases
(the store does not change)

so, E, S ` i : Int(i), S
i is an integer literal

so, E, S ` true : Bool(true), S

so, E, S ` false : Bool(false), S

so, E, S ` s : String(n,s), S

s is a string literal
n is the length of s

#24

Operational Semantics of
Variable References

• Note the double lookup of variables
– First from name to location (compile time)
– Then from location to value (run time)

• The store does not change
• A special case:

so, E, S ` id : v, S

E(id) = lid
S(lid) = v

so, E, S ` self : so, S

#25

Operational Semantics of
Assignment

• A three step process
– Evaluate the right hand side

⇒ a value v and a new store S1

– Fetch the location of the assigned variable
– The result is the value v and an updated store

• The environment does not change

so, E, S ` id Ã e : v, S2

so, E, S ` e : v, S1
E(id) = lid

S2 = S1[v/lid]

#26

Operational Semantics of
Conditionals

• The “threading” of the store enforces an evaluation
sequence
– e1 must be evaluated first to produce S1

– Then e2 can be evaluated

• The result of evaluating e1 is a boolean object
– The typing rules ensure this
– There is another, similar, rule for Bool(false)

so, E, S ` if e1 then e2 else e3 : v, S2

so, E, S ` e1 : Bool(true), S1

so, E, S1 ` e2 : v, S2

#27

Operational Semantics of
Sequences

• Again the threading of the store expresses the
intended evaluation sequence

• Only the last value is used
• But all the side-effects are collected (how?)

so, E, S ` { e1; …; en; } : vn, Sn

so, E, S ` e1 : v1, S1

so, E, S1 ` e2 : v2, S2

…

so, E, Sn-1 ` en : vn , Sn

Q: Music (198 / 842)

•Give both of the other place
names that occur in the song
Istanbul (Not Constantinople).
It was originally performed in
1953 by The Four Lads and was
covered by They Might Be
Giants in 1990.

Q: Games (516 / 842)

•This 1988 entry in the King's
Quest series of games was the
first to feature a female
protagonist. The quest involved
finding the magical healing fruit
and defeating an evil fairy to
recover a talisman.

Q: Movies (403 / 842)

•In this 1989 comedy also starring
George Carlin, the title duo
collect historical figures to avoid
flunking out of San Dimas High
School. An indicative exchange:
"Take them to the iron
maiden. / Excellent! / Execute
them. / Bogus!"

Q: Books (711 / 842)

•In this 1943 Antoine de Saint-
Exupery novel the title
character lives on an asteroid
with a rose but eventually
travels to Earth.

#32

Operational Semantics of while (1)

• If e1 evaluates to Bool(false) then the loop
terminates immediately
– With the side-effects from the evaluation of e1

– And with (arbitrary) result value void

• The typing rules ensure that e1 evaluates to a
boolean object

so, E, S ` while e1 loop e2 pool : void, S1

so, E, S ` e1 : Bool(false), S1

#33

Operational Semantics of while (2)

• Note the sequencing (S ! S1 ! S2 ! S3)

• Note how looping is expressed
– Evaluation of “while …” is expressed in terms of

the evaluation of itself in another state

• The result of evaluating e2 is discarded
– Only the side-effect is preserved

so, E, S ` while e1 loop e2 pool : void, S3

so, E, S ` e1 : Bool(true), S1

so, E, S1 ` e2 : v, S2

so, E, S2 ` while e1 loop e2 pool : void, S3

#34

Operational Semantics of let
Expressions (1)

• What is the context in which e2 must be
evaluated?
– Environment like E but with a new binding of id to

a fresh location lnew

– Store like S1 but with lnew mapped to v1

so, E, S ` let id : T Ã e1 in e2 : v2, S2

so, E, S ` e1 : v1, S1

so, ?, ? ` e2 : v, S2

#35

Operational Semantics of let
Expressions (II)

• We write lnew = newloc(S) to say that lnew is a
location that is not already used in S
– Think of newloc as the dynamic memory

allocation function (or reserving stack space)

• The operational rule for let:

so, E, S ` let id : T Ã e1 in e2 : v2, S2

so, E, S ` e1 : v1, S1

lnew = newloc(S1)

so, E[lnew/id] , S1[v1/lnew] ` e2 : v2, S2

#36

Balancing Act

• Now we're going to do
some very difficult rules
– new, dispatch

• This may initially seem
tricky
– How could that possibly

work?
– What's going on here?

• With time, these rules
can actually be elegant!

#37

Operational Semantics of new

• Consider the expression new T
• Informal semantics

– Allocate new locations to hold the values for all
attributes of an object of class T
• Essentially, allocate space for a new object

– Initialize those locations with the default values
of attributes

– Evaluate the initializers and set the resulting
attribute values

– Return the newly allocated object

#38

Default Values
• For each class A there is a default value

denoted by DA

– Dint = Int(0)

– Dbool = Bool(false)

– Dstring = String(0, “”)

– DA = void (for all others classes A)

#39

More Notation

• For a class A we write
class(A) = (a1 : T1 Ã e1, …, an : Tn Ã en)

where
– ai are the attributes (including inherited ones)

– Ti are their declared types

– ei are the initializers

• This is the class map from PA4!

#40

Operational Semantics of new
• Observation: new SELF_TYPE allocates an

object with the same dynamic type as self

so, E, S ` new T : v, S2

T0 = if T == SELF_TYPE and so = X(…) then X else T

class(T0) = (a1 : T1 Ã e1,…, an : Tn Ã en)

li = newloc(S) for i = 1,…,n

v = T0(a1= l1,…,an= ln)

S1 = S[DT1/l1,…,DTn/ln]

E’ = [a1 : l1, …, an : ln]

v, E’, S1 ` { a1 Ã e1; …; an Ã en; } : vn, S2

Initialize
new object

#41

Operational Semantics of new
• Observation: new SELF_TYPE allocates an

object with the same dynamic type as self

so, E, S ` new T : v, S2

T0 = if T == SELF_TYPE and so = X(…) then X else T

class(T0) = (a1 : T1 Ã e1,…, an : Tn Ã en)

li = newloc(S) for i = 1,…,n

v = T0(a1= l1,…,an= ln)

S1 = S[DT1/l1,…,DTn/ln]

E’ = [a1 : l1, …, an : ln]

v, E’, S1 ` { a1 Ã e1; …; an Ã en; } : vn, S2

Initialize
new object

#42

Operational Semantics of new

• The first three lines allocate the object
• The rest of the lines initialize it

– By evaluating a sequence of assignments

• State in which the initializers are evaluated:
– Self is the current object
– Only the attributes are in scope (same as in

typing)
– Starting value of attributes are the default ones

• Side-effects of initialization are kept (in S2)

#43

Operational Semantics of
Method Dispatch

• Consider the expression e0.f(e1,…,en)

• Informal semantics:
– Evaluate the arguments in order e1,…,en

– Evaluate e0 to the target object

– Let X be the dynamic type of the target object
– Fetch from X the definition of f (with n args)
– Create n new locations and an environment that maps f’s

formal arguments to those locations
– Initialize the locations with the actual arguments
– Set self to the target object and evaluate f’s body

#44

More Notation

• For a class A and a method f of A (possibly
inherited) we write:

imp(A, f) = (x1, …, xn, ebody)

where
– xi are the names of the formal arguments

– ebody is the body of the method

• This is the imp map from PA4!

#45

Dispatch OpSem

so, E, S ` e0.f(e1,…,en) : v, Sn+3

so, E, S ` e1 : v1 , S1

so, E, S1 ` e2 : v2 , S2

…

so, E, Sn-1 ` en : vn , Sn

so, E, Sn ` e0 : v0, Sn+1

v0 = X(a1 = l1,…, am = lm)

imp(X, f) = (x1,…, xn, ebody)

lxi = newloc(Sn+1) for i = 1,…,n

E’ = [x1 : lx1, …, xn : lxn, a1 : l1,…,am : lm]

Sn+2 = Sn+1[v1/lx1,…,vn/lxn]

v0 , E’, Sn+2 ` ebody : v, Sn+3

Evaluate arguments

Evaluate receiver object

Find type and attributes

Find formals and body

New
environment

New store
Evaluate body

#46

Operational Semantics of Dispatch

• The body of the method is invoked with
– E mapping formal arguments and self’s attributes
– S like the caller’s except with actual arguments

bound to the locations allocated for formals

• The notion of the activation frame is implicit
– New locations are allocated for actual arguments

• The semantics of static dispatch is similar
except the implementation of f is taken from
the specified class

#47

Runtime Errors
Operational rules do not cover all cases
Consider for example the rule for dispatch:

What happens if imp(X, f) is not defined?
Cannot happen in a well-typed program

(because of the Type Safety Theorem)

so, E, S ` e0.f(e1,…,en) : v, Sn+3

…
so, E, Sn ` e0 : v0,Sn+1

v0 = X(a1 = l1,…, am = lm)
imp(X, f) = (x1,…, xn, ebody)
…

#48

Runtime Errors

• There are some runtime errors that the type
checker does not try to prevent
– A dispatch on void
– Division by zero
– Substring out of range
– Heap overflow

• In such case the execution must abort
gracefully
– With an error message and not with a segfault

#49

Conclusions

• Operational rules are very precise
– Nothing is left unspecified

• Operational rules contain a lot of details
– Read them carefully

• Most languages do not have a well specified
operational semantics

• When portability is important an operational
semantics becomes essential
– But not always using the exact notation we used

for Cool

#50

Homework
• PA4 due Wed Oct 28
• WA5 due Thu Oct 29
• Next:

– Chapters 9.4 – 9.7 in course book
– Optional Wikipedia articles

