
#1

Cool Type CheckingCool Type Checking
Cool Run-Time OrganizationCool Run-Time Organization

Run-Time Organization

#2

One-Slide Summary

• We will use SELF_TYPEC for “C or any subtype
of C”. It shows off the subtlety of our type
system and allows us to check methods that
return self objects.

• The lifetime of an activation of (i.e., a call
to) procedure P is all the steps to execute P
plus all the steps in procedures that P calls.

• Lifetime is a run-time (dynamic) notion; we
can model it with trees or stacks.

#3

Lecture Outline

• SELF_TYPE

• Object Lifetime

• Activation Records

• Stack Frames

#4

SELF_TYPE Dynamic Dispatch
• If the return type of the method is SELF_TYPE

then the type of the dispatch is the type of
the dispatch expression:

O,M,C ` e0.f(e1,…,en) : T0

O,M,C ` e0 : T0

 …

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti · Ti’ 1 · i · n

A

B

C

D

#5

Where is SELF_TYPE
Illegal in COOL?

m(x : T) : T’ { … }
• Only T’ can be SELF_TYPE! Not T.

What could go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {…}; };
class B inherits A {
 b() : int { … };
 comp(y : SELF_TYPE) : Bool { … y.b() …}; };
…
 let x : A ← new B in … x.comp(new A); …
… 1 2 3

4

#6

Summary of SELF_TYPE
• The extended · and lub operations do a lot

of the work. Implement them to handle
SELF_TYPE

• SELF_TYPE can be used only in a few places.
Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any
subtype in the current class
– The exception is the type checking of dispatch,

where SELF_TYPE as the return type of an
invoked method might have nothing to do with
the current enclosing class

#7

Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea
– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that
type checking can be quite subtle

• In practice, there should be a balance
between the complexity of the type system
and its expressiveness

#8

Type Systems

• The rules in these lecture were Cool-specific
– Other languages have very different rules
– We’ll survey a few more type systems later

• General themes
– Type rules are defined on the structure of expressions
– Types of variables are modeled by an environment

• Type systems tradeoff flexibility and safety

#9

Course Goals

• At the end of this course, you will be
acquainted with the fundamental concepts in
the design and implementation of high-level
programming languages. In particular, you will
understand the theory and practice of lexing,
parsing, semantic analysis, and code
generation. You will also have gained practical
experience programming in multiple different
languages.

#10

Status

• We have covered the front-end phases
– Lexical analysis
– Parsing
– Semantic analysis

• Next are the back-end phases
– Optimization (optional)
– Code execution (or code generation)

• We’ll do code execution first . . .

#11

Run-time environments

• Before discussing code execution, we need to
understand what we are trying to execute

• There are a number of standard techniques
that are widely used for structuring
executable code

• Standard Way:
– Code
– Stack
– Heap

#12

Run-Time Organization Outline

• Management of run-time resources

• Correspondence between static (compile-
time) and dynamic (run-time) structures
– “Compile-time” == “Interpret-time”

• Storage organization

#13

Run-time Resources

• Execution of a program is initially under the
control of the operating system

• When a program is invoked:
– The OS allocates space for the program
– The code is loaded into part of the space
– The OS jumps to the entry point (i.e., “main”)

• How does “space” work?

#14

(Digression) Virtual Memory

• An address space is a partial mapping from addresses
to values. Like a big array: the value at memory
address 0x12340000 is 87. Partial means some
addresses may be invalid.

• There is an address space associated with the
physical memory in your computer. If you have 1GB
of RAM, addresses 0 to 0x40000000 are valid.

• If I want to store some information on MachineX and
you want to store some information on MachineX, we
would have to collude to use different physical
addresses (= different parts of the address space).

#15

(Digression) Virtual Memory 2
• Virtual memory is an abstraction in which each

process gets its own virtual address space. The
operating system and hardware work together to
provide this abstraction. All modern computers use it.

• Each virtual address space is then mapped separately
into a different part of physical memory. (simplification)

• So Process1 can store information at its virtual
address 0x4444 and Process2 can also store
information at its virtual address 0x4444 and there
will be no overlap in physical memory.
– e.g., P1 0x4444 virtual -> 0x1000 physical
– and P2 0x4444 virtual -> 0x8000 physical

#16

Program Memory Layout
Low Addresses
0x00000000

High Addresses

0x40000000

Memory
Code

Other Space

#17

Notes

• Our pictures of machine organization have:
– Low address at the top
– High address at the bottom
– Lines delimiting areas for different kinds of data

• These pictures are simplifications
– e.g., not all memory need be contiguous

• In some textbooks lower addresses are at
bottom (doesn't matter)

#18

What is Other Space?

• Holds all data for the program
• Other Space = Data Space

• A compiler is responsible for:
– Generating code (that is run later)
– Orchestrating use of the data area

• An interpreter is responsible for:
– Executing the code directly (now)
– Orchestrating use of the (run-time) data

#19

Code Execution Goals

• Two goals:
– Correctness
– Speed

• Most
complications at
this stage come
from trying to be
fast as well as
correct

#20

Assumptions about Execution

• (1) Execution is sequential; control moves
from one point in a program to another in a
well-defined order

• (2) When a procedure is called, control
eventually returns to the point immediately
after the call

Do these assumptions always hold?

#21

Activations

• An invocation of procedure P is an activation
of P

• The lifetime of an activation of P is
– All the steps to execute P
– Including all the steps in procedures that P calls

#22

Lifetimes of Variables

• The lifetime of a variable x is the portion of
execution during which x is defined

• Note that
– Scope is a static concept
– Lifetime is a dynamic (run-time) concept

#23

Activation Trees
• Assumption (2) requires that when P calls Q,

then Q returns before P does
• Lifetimes of procedure activations are

properly nested
• Activation lifetimes can be depicted as a tree

#24

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

}
Main

fg

g

#25

Example 2

Class Main {
g() : Int { 1 };
f(x:Int): Int {

if x = 0 then g() else f(x - 1) fi
 };

main(): Int {{ f(3); }};
}
What is the activation tree for this example?

#26

Notes

• The activation tree depends on run-time
behavior

• The activation tree may be different for every
program input

• Since activations are properly nested, a stack
can track currently active procedures
– This is the call stack

#27

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

} Main Stack

Main

#28

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

} Main

g

Stack

Main

g

#29

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

} Main

g f

Stack

Main

f

#30

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

} Main

fg

g

Stack

Main

f

g

#31

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

Q: Music (182 / 842)

•The man in Brussels gives the
singer what type of sandwich in
the 1982 Men At Work hit Down
Under?

Q: TV (110 / 842)

•Name the series and either of
the characters involved in the
first interracial kiss on US
television. The kiss took place in
the 1968 episode "Plato's
Stepchildren".

Q: Games (530 / 842)

•This 1982 arcade game required
the player to hop around on a
fake-3D pyramid of colored
cubes. The player jumped on
cubes to change their color
while avoiding a coily snake and
other dangers.

#35

Activation Records
• On many machines the stack starts at high-

addresses and grows towards lower addresses

• The information needed to manage one
procedure activation is called an activation
record (AR) or frame

• If procedure F calls G, then G’s activation
record contains a mix of info about F and G.

#36

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which
point F resumes. G’s AR contains information
needed to resume execution of F.

• G’s AR may also contain:
– Actual parameters to G (supplied by F)
– G’s return value (needed by F)
– Space for G’s local variables

#37

The Contents of a
Typical AR for G

• Space for G’s return value
• Actual parameters
• Pointer to the previous activation record

– The control link points to AR of F (caller of G)
– (possibly also called the frame pointer)

• Machine status prior to calling G
– Local variables
– (Compiler: register & program counter contents)

• Other temporary values

#38

Example 2, Revisited

Class Main {
g() : Int { 1 };
f(x:Int):Int {

if x=0 then g() else f(x - 1) (**) fi
};
main(): Int {{f(3); (*) }};}

AR for f:
space for
result

argument

control link
return address

#39

Stack After Two Calls to f

main
 result
3

(*)

f

 result
2

(**)

f

Stack

Class Main {
g() : Int { 1 };
f(x:Int):Int {

if x=0 then g()
else f(x - 1) (**) fi

};
main(): Int {{f(3); (*) }};

}

#40

Notes

• main has no argument or local variables and
its result is “never” used; its AR is
uninteresting

• (*) and (**) are return addresses of the
invocations of f
– The return address is where execution resumes

after a procedure call finishes

• This is only one of many possible AR designs
– Would also work for C, Pascal, FORTRAN, etc.

#41

The Main Point

The compiler must determine, at compile-time,
the layout of activation records and generate

code that, when executed at run-time,
correctly accesses locations in those

activation records.

Thus, the AR layout and the compiler
must be designed together!

#42

Discussion

• The advantage of placing the return value 1st in a
frame is that the caller can find it at a fixed offset
from its own frame
– The caller must write the return address there

• There is nothing magic about this organization
– Can rearrange order of frame elements
– Can divide caller/callee responsibilities differently
– An organization is better if it improves execution speed

or simplifies code generation
• Ask me about what embedded devices do.

#43

Discussion (Cont.)

• Real compilers hold as much of the frame as
possible in registers
– Especially the method result and arguments

• Why?

#44

Globals

• All references to a global variable point to the
same object
– Can’t store a global in an activation record

• Is this true?

• Globals are assigned a fixed address once
– Variables with fixed address are “statically

allocated”

• Depending on the language, there may be
other statically allocated values

#45

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

#46

Heap Storage

• A value that outlives the procedure that
creates it cannot be kept in the AR

method foo() { new Bar }
The Bar value must survive deallocation of foo’s AR

• Languages with dynamically allocated data
use a heap to store dynamic data

#47

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with
fixed addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free

#48

Notes (Cont.)

• Both the heap and the stack grow
• Compilers must take care that they don’t

grow into each other
• Solution: start heap and stack at opposite

ends of memory and let the grow towards
each other

#49

Memory Layout with Heap

Low Address

High Address

Memory

Code

Heap

Static Data

Stack

#50

Your Own Heap

• We must emit assembly code for things like:
let x = new Counter(5) in
let y = x in {
 x.increment(1);
 print(y.getCount()); // what does this print?
}

• You’ll need to use and manage explicit heap
(as described today and also next week). A
heap maps addresses (integers) to values.

#51

Homework
• PA4 checkpoint due Oct 14, 11:50pm
• PA4 due Oct 28 (15 days)

– If you haven't already started ...

• For next time: Read Chapters 7.3, 9-9.3
• Stroustrup article

– This article is often loved by students
– It is not optional; expect it on Midterm2

