
#1

Type Type
CheckingChecking

#2

One-Slide Summary

• A type environment gives types for free
variables. You typecheck a let-body with an
environment that has been updated to
contain the new let-variable.

• If an object of type X could be used when
one of type Y is acceptable then we say X is
a subtype of Y, also written X · Y.

• A type system is sound if ∀ E.
dynamic_type(E) · static_type(E)

#3

Lecture Outline

• Typing Rules

• Typing Environments

• “Let” Rules

• Subtyping

• Wrong Rules

#4

Example: 1 + 2

` 1 : Int
` 1 + 2 : Int

` 2 : Int

#5

 Soundness

• A type system is sound if
– Whenever ` e : T

– Then e evaluates to a value
of type T

• We only want sound rules
– But some sound rules are

better than others:

` i : Object

(i is an integer)

If we can
prove it, then

it's true!

#6

Type Checking Proofs

• Type checking proves facts e : T
– One type rule is used for each kind of expression

• In the type rule used for a node e
– The hypotheses are the proofs of types of e’s

subexpressions
– The conclusion is the proof of type of e itself

#7

Rules for Constants

` false : Bool [Bool]

` s : String
[String]

(s is a string
constant)

#8

Rule for New

new T produces an object of type T
– Ignore SELF_TYPE for now . . .

` new T : T
[New]

#9

Two More Rules

` not e : Bool
` e : Bool [Not]

` while e1 loop e2 pool : Object

` e1 : Bool

` e2 : T [Loop]

#10

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

#11

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

#12

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false : Bool

#13

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

: Bool

: Bool

#14

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1: Bool

: Bool

#15

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1: Bool

: Bool

: Int

#16

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2

: Bool

: Bool

: Int

#17

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2

: Bool

: Bool

: Int

: Int

#18

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int

#19

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

#20

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

#21

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

#22

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

: Object

#23

Typing Derivations

• The typing reasoning can be expressed as a
tree:

` 2 * 3 : Int

` 2 : Int ` 3 : Int

` not false : Bool

` false : Bool ` 1 : Int

` while not false loop 1 + 2 * 3 : Object

` 1 + 2 * 3: Int

• The root of the tree is the whole
expression

• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses

#24

A Problem

• What is the type of a variable reference?

• The local structural rule does not carry
enough information to give x a type. Fail.

` x : ?
[Var] (x is an

identifier)

#25

A Solution: Put more
information in the rules!

• A type environment gives types for free
variables
– A type environment is a mapping from

Object_Identifiers to Types
– A variable is free in an expression if:

• The expression contains an occurrence of the variable
that refers to a declaration outside the expression

– in the expression “x”, the variable “x” is free
– in “let x : Int in x + y” only “y” is free
– in “x + let x : Int in x + y” both “x”, “y” are free

#26

Type Environments

Let O be a function from Object_Identifiers to
Types

The sentence O ` e : T

is read: Under the assumption that variables
have the types given by O, it is provable that
the expression e has the type T

#27

Modified Rules

The type environment is added to the earlier
rules:

O ` i : Int
[Int]

O ` e1 + e2 : Int

O ` e1 : Int

 O ` e2 : Int [Add]

(i is an integer)

#28

New Rules

And we can write new rules:

Equivalently:

O ` x : T
[Var] (O(x) = T)

O ` x : T
O(x) = T [Var]

#29

Let

O[T0/x] means “O modified to map x to T0 and
behaving as O on all other arguments”:
 O[T0/x] (x) = T0

 O[T0/x] (y) = O(y)

(You can write O[x/T0] on tests/assignments.)

O ` let x : T0 in e1 : T1

O[T0/x] ` e1 : T1 [Let-No-Init]

#30

Let Example

• Consider the Cool expression
let x : T0 in (let y : T1 in Ex, y) + (let x : T2 in Fx, y)

 (where Ex, y and Fx, y are some Cool expression
that contain occurrences of “x” and “y”)

• Scope
– of “y” is Ex, y

– of outer “x” is Ex, y

– of inner “x” is Fx, y

• This is captured precisely in the typing rule.

#31

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

x

AST

#32

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

AST
Type env.

#33

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

AST
Type env.

#34

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

AST
Type env.

O[T0/x] ` O[T0/x] `

#35

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

AST
Type env.

O[T0/x] ` O[T0/x] `

#36

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

AST
Type env.

O[T0/x] ` O[T0/x] `

#37

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

AST
Type env.

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#38

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#39

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#40

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#41

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#42

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#43

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#44

Example of Typing “let”

let x : T0 in

let y : T1 in

+

let x : T2 in

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

#45

Notes

• The type environment gives types to the free
identifiers in the current scope

• The type environment is passed down the
AST from the root towards the leaves

• Types are computed up the AST from the
leaves towards the root

Q: Movies (362 / 842)

•In this 1992 comedy Dana Carvey
and Mike Myers reprise a
Saturday Night Live skit, sing
Bohemian Rhapsody and say of
a guitar: "Oh yes, it will be
mine."

Q: General (455 / 842)

• This numerical technique for finding
solutions to boundary-value problems
was initially developed for use in
structural analysis in the 1940's. The
subject is represented by a model
consisting of a number of linked
simplified representations of discrete
regions. It is often used to determine
stress and displacement in mechanical
systems.

Q: Movies (377 / 842)

• Identify the subject or the speaker in 2
of the following 3 Star Wars quotes.
– "Aren't you a little short to be a

stormtrooper?"
– "I felt a great disturbance in the Force ...

as if millions of voices suddenly cried out
in terror and were suddenly silenced."

– "I recognized your foul stench when I was
brought on board."

#49

Let with Initialization

Now consider let with initialization:

This rule is weak. Why?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T0

O[T0/x] ` e1 : T1 [Let-Init]

#50

Let with Initialization

• Consider the example:

 class C inherits P { … }
 …
 let x : P Ã new C in …

 …
• The previous let rule does not allow this

code
– We say that the rule is too weak or incomplete

#51

Subtyping

• Define a relation X · Y on classes to say
that:
– An object of type X could be used when one of

type Y is acceptable, or equivalently
– X conforms with Y
– In Cool this means that X is a subclass of Y

• Define a relation · on classes
 X · X

 X · Y if X inherits from Y

 X · Z if X · Y and Y · Z

#52

Let With Initialization (Better)

• Both rules for let are sound
• But more programs type check with this

new rule (it is more complete)

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T

T · T0

O[T0/x] ` e1 : T1
[Let-Init]

#53

Type System Tug-of-War

• There is a tension between
– Flexible rules that do not constrain programming

– Restrictive rules that ensure safety of execution

#54

Expressiveness
of Static Type Systems

• A static type system enables a compiler to
detect many common programming errors

• The cost is that some correct programs are
disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type

checking

• But more expressive type systems are also
more complex

#55

Dynamic And Static Types

• The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object
– A run-time notion
– Even languages that are not statically typed have

the notion of dynamic type

• The static type of an expression is a notation
that captures all possible dynamic types the
expression could take
– A compile-time notion

#56

Dynamic and Static Types. (Cont.)

• In early type systems the set of static types
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
 dynamic_type(E) = static_type(E)
 (in all executions, E evaluates to values of the

type inferred by the compiler)

• This gets more complicated in advanced type
systems (e.g., Java, Cool)

#57

Dynamic and Static Types in COOL

• A variable of static type A can hold values of
static type B, if B · A

class A { … }
class B inherits A {…}
class Main {
 A x ← new A;
 …
 x ← new B;
 …
}

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

#58

Dynamic and Static Types

Soundness theorem for the Cool type system:
∀ E. dynamic_type(E) · static_type(E)

Why is this Ok?
– For E, compiler uses static_type(E)
– All operations that can be used on an object of type

C can also be used on an object of type C’ · C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with the same types!

#59

Subtyping Example

• Consider the following Cool class definitions

 Class A { a() : int { 0 }; }
 Class B inherits A { b() : int { 1 }; }

• An instance of B has methods “a” and “b”
• An instance of A has method “a”

– A type error occurs if we try to invoke method
“b” on an instance of A

#60

Example of Wrong Let Rule (1)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O ` e1 : T1

#61

Example of Wrong Let Rule (1)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O ` e1 : T1

• The following good program does not typecheck
let x : Int Ã 0 in x + 1

• Why?

#62

Example of Wrong Let Rule (2)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T0 · T O[T0/x] ` e1 : T1

#63

Example of Wrong Let Rule (2)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T0 · T O[T0/x] ` e1 : T1

• The following bad program is well typed
 let x : B Ã new A in x.b()
• Why is this program bad?

#64

Example of Wrong Let Rule (3)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O[T/x] ` e1 : T1

#65

Example of Wrong Let Rule (3)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O[T/x] ` e1 : T1

• The following good program is not well typed
let x : A Ã new B in {… x Ã new A; x.a(); }

• Why is this program not well typed?

#66

Typing Rule Notation

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:

– Makes the type system unsound
(bad programs are accepted as well typed)

– Or, makes the type system less usable (incomplete)
(good programs are rejected)

• But some good programs will be rejected anyway
– The notion of a good program is undecidable

#67

Assignment

More uses of subtyping:

[Assign]

O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0

#68

Initialized Attributes

• Let OC(x) = T for all attributes x:T in class C

– OC represents the class-wide scope

• Attribute initialization is similar to let,
except for the scope of names

[Attr-Init]OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0

#69

If-Then-Else

• Consider:
if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type

• The best we can do statically is the smallest
supertype larger than the type of e1 and e2

#70

If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to
be both A or B
– Smallest supertype is P

P

A B

#71

Least Upper Bounds

• Define: lub(X,Y) to be the least upper
bound of X and Y. lub(X,Y) is Z if
– X · Z Æ Y · Z

Z is an upper bound

– X · Z’ Æ Y · Z’ ⇒ Z · Z’
Z is least among upper bounds

• In Cool, the least upper bound of two types
is their least common ancestor in the
inheritance tree

#72

If-Then-Else Revisited

[If-Then-Else]

O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool

O ` e1 : T1

O ` e2 : T2

#73

Case

• The rule for case expressions takes a lub
over all branches

[Case]

O ` case e0 of x1:T1) e1;

 …; xn : Tn) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’

…
O[Tn/xn] ` en : Tn’

#74

Next Time

• Type checking method dispatch

• Type checking with SELF_TYPE in COOL

#75

Homework
• Today: WA3 due
• Get started on PA4

– Checkpoint due Oct 14

• Before Next Class: Read Chapter 7.2

	Type Checking
	One-Slide Summary
	Lecture Outline
	Example: 1 + 2
	Soundness
	Type Checking Proofs
	Rules for Constants
	Rule for New
	Two More Rules
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Typing Derivations
	A Problem
	A Solution: Put more information in the rules!
	Type Environments
	Modified Rules
	New Rules
	Let
	Let Example
	Let. Example.
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Notes
	Q: Movies (362 / 842)
	Q: General (455 / 842)
	Q: Movies (377 / 842)
	Let with Initialization
	Slide 50
	Subtyping
	Let With Initialization (Better)
	Type System Tug-of-War
	Expressiveness of Static Type Systems
	Dynamic And Static Types
	Dynamic and Static Types. (Cont.)
	Dynamic and Static Types in COOL
	Dynamic and Static Types
	Subtyping Example
	Example of Wrong Let Rule (1)
	Slide 61
	Slide 62
	Example of Wrong Let Rule (2)
	Example of Wrong Let Rule (3)
	Slide 65
	Typing Rule Notation
	Assignment
	Initialized Attributes
	If-Then-Else
	If-Then-Else example
	Least Upper Bounds
	If-Then-Else Revisited
	Case
	Next Time (Post-Midterm)
	Homework

