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One-Slide Summary

• A type environment gives types for free 
variables. You typecheck a let-body with an 
environment that has been updated to 
contain the new let-variable. 

• If an object of type X could be used when 
one of type Y is acceptable then we say X is 
a subtype of Y, also written X · Y. 

• A type system is sound if ∀ E.  
dynamic_type(E)  ·  static_type(E) 
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Lecture Outline

• Typing Rules

• Typing Environments

• “Let” Rules

• Subtyping

• Wrong Rules
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Example: 1 + 2

` 1 : Int
` 1 + 2 : Int

` 2 : Int
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       Soundness

• A type system is sound if
– Whenever    ` e : T 

– Then e evaluates to a value 
of type T

• We only want sound rules
– But some sound rules are 

better than others:

` i : Object

(i is an integer)

If we can
prove it, then 

it's true!
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Type Checking Proofs

• Type checking proves facts e : T
– One type rule is used for each kind of expression

• In the type rule used for a node e
– The hypotheses are the proofs of types of e’s 

subexpressions
– The conclusion is the proof of type of e itself
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Rules for Constants

` false : Bool [Bool]

` s : String
[String]

(s is a string 
constant)
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Rule for New

new T produces an object of type T
– Ignore SELF_TYPE for now . . .

` new T : T
[New]
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Two More Rules

` not e : Bool
` e : Bool [Not]

` while e1 loop e2 pool : Object

` e1 : Bool 

` e2 : T [Loop]
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Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while    loop   pool
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Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while    loop   pool

not

false
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Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while    loop   pool

not

false : Bool
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Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while    loop   pool

not
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+

1: Bool

: Bool

: Int
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Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while    loop   pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

: Object
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Typing Derivations

• The typing reasoning can be expressed as a 
tree:

` 2 * 3 : Int

` 2 : Int       ` 3 : Int

` not false : Bool

` false : Bool ` 1 : Int

` while not false loop 1 + 2 * 3 : Object

` 1 + 2 * 3: Int

• The root of the tree is the whole 
expression

• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses
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A Problem

• What is the type of a variable reference?

• The local structural rule does not carry 
enough information to give x a type. Fail.

` x : ?
[Var] (x is an 

identifier)
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A Solution: Put more 
information in the rules!

• A type environment gives types for free 
variables
– A type environment is a mapping from 

Object_Identifiers to Types
– A variable is free in an expression if:

• The expression contains an occurrence of the variable 
that refers to a declaration outside the expression

– in the expression “x”, the variable “x” is free
– in “let x : Int in x + y” only “y” is free
– in “x + let x : Int in x + y” both “x”, “y” are free 
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Type Environments

Let O be a function from Object_Identifiers to 
Types

The sentence O ` e : T

is read: Under the assumption that variables 
have the types given by O, it is provable that 
the expression e has the type T
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Modified Rules

The type environment is added to the earlier 
rules:

O ` i : Int
[Int]

O ` e1 + e2 : Int

O ` e1 : Int

 O ` e2 : Int [Add]

(i is an integer)
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New Rules

And we can write new rules:

Equivalently:

O ` x : T
[Var]   (O(x) = T)

O ` x : T
O(x) = T [Var]
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Let

O[T0/x] means “O modified to map x to T0 and 
behaving as O on all other arguments”:
                 O[T0/x] (x) = T0

                 O[T0/x] (y) = O(y)

(You can write O[x/T0] on tests/assignments.)

O ` let x : T0 in e1 : T1

O[T0/x] ` e1 : T1 [Let-No-Init]
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Let Example

• Consider the Cool expression
let x : T0 in (let y : T1 in Ex, y) + (let x : T2 in Fx, y)

   (where Ex, y and Fx, y are some Cool expression 
that contain occurrences of “x” and “y”)

• Scope
– of “y” is Ex, y

– of outer “x” is Ex, y

– of inner “x” is Fx, y

• This is captured precisely in the typing rule.
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

x

AST
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

AST
Type env.
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

AST
Type env.
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

AST
Type env.

O[T0/x] ` O[T0/x] `
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

AST
Type env.

O[T0/x] ` O[T0/x] `
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

AST
Type env.

O[T0/x] ` O[T0/x] `
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

AST
Type env.

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

: int

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

: int

: int

AST
Type env.
Types

: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

: int

: int

AST
Type env.
Types

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 



#42

Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

: int

: int

AST
Type env.
Types

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

: int

: int

AST
Type env.
Types

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Example of Typing “let”

let x : T0 in 

let y : T1 in 

+

let x : T2 in 

Ex, y

Fx, y

O `

x

O[T0/x] `

(O[T0/x])[T1/y] ` 

(O[T0/x])[T1/y] ` 

: int

: int

AST
Type env.
Types

: int

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Notes

• The type environment gives types to the free 
identifiers in the current scope

• The type environment is passed down the 
AST from the root towards the leaves

• Types are computed up the AST from the 
leaves towards the root



Q:  Movies  (362 / 842) 

•In this 1992 comedy Dana Carvey 
and Mike Myers reprise a 
Saturday Night Live skit, sing 
Bohemian Rhapsody and say of 
a guitar: "Oh yes, it will be 
mine."  



Q:  General  (455 / 842) 

• This numerical technique for finding 
solutions to boundary-value problems 
was initially developed for use in 
structural analysis in the 1940's. The 
subject is represented by a model 
consisting of a number of linked 
simplified representations of discrete 
regions. It is often used to determine 
stress and displacement in mechanical 
systems.  



Q:  Movies  (377 / 842) 

• Identify the subject or the speaker in 2 
of the following 3 Star Wars quotes. 
–  "Aren't you a little short to be a 

stormtrooper?" 
–  "I felt a great disturbance in the Force ... 

as if millions of voices suddenly cried out 
in terror and were suddenly silenced." 

–  "I recognized your foul stench when I was 
brought on board."  
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Let with Initialization

Now consider let with initialization:

This rule is weak.  Why?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T0

O[T0/x] ` e1 : T1 [Let-Init]
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Let with Initialization

• Consider the example:

          class C inherits P { … }
          …
          let x : P Ã new C in …

           …
• The previous let rule does not allow this 

code
– We say that the rule is too weak or incomplete
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Subtyping

• Define a relation X · Y on classes to say 
that:
– An object of type X could be used when one of 

type Y is acceptable, or equivalently
– X conforms with Y
– In Cool this means that X is a subclass of Y

• Define a relation · on classes
   X · X

   X · Y if X inherits from Y

   X · Z if X · Y and Y · Z
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Let With Initialization (Better)

• Both rules for let are sound
• But more programs type check with this 

new rule (it is more complete)

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T

T · T0

O[T0/x] ` e1 : T1
[Let-Init]
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Type System Tug-of-War

• There is a tension between 
– Flexible rules that do not constrain programming

– Restrictive rules that ensure safety of execution
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Expressiveness 
of Static Type Systems

• A static type system enables a compiler to 
detect many common programming errors

• The cost is that some correct programs are 
disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type 

checking

• But more expressive type systems are also 
more complex
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Dynamic And Static Types

• The dynamic type of an object is the class C 
that is used in the “new C” expression that 
creates the object
– A run-time notion
– Even languages that are not statically typed have 

the notion of dynamic type

• The static type of an expression is a notation 
that captures all possible dynamic types the 
expression could take
– A compile-time notion
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Dynamic and Static Types. (Cont.)

• In early type systems the set of static types 
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
            dynamic_type(E) = static_type(E)
   (in all executions, E evaluates to values of the 

type inferred by the compiler)

• This gets more complicated in advanced type 
systems (e.g., Java, Cool)
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Dynamic and Static Types in COOL

• A variable of static type A can hold values of 
static type B, if B · A 

class A { … }
class B inherits A {…}
class Main {
   A x ← new A;
   …
   x ← new B;
   …
} 

x has static 
type A

Here, x’s value has 
dynamic type A

Here, x’s value has 
dynamic type B
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Dynamic and Static Types

Soundness theorem for the Cool type system:
∀ E.  dynamic_type(E)  ·  static_type(E) 

Why is this Ok?
– For E, compiler uses static_type(E)
– All operations that can be used on an object of type 

C can also be used on an object of type C’ · C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with the same types!
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Subtyping Example

• Consider the following Cool class definitions

           Class A { a() : int { 0 }; }
           Class B inherits A { b() : int { 1 }; }

• An instance of B has methods “a” and “b”
• An instance of A has method “a”

– A type error occurs if we try to invoke method 
“b” on an instance of A
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Example of Wrong Let Rule (1)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T       T · T0        O ` e1 : T1
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Example of Wrong Let Rule (1)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T       T · T0        O ` e1 : T1

• The following good program does not typecheck
let x : Int Ã 0 in x + 1

• Why?
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Example of Wrong Let Rule (2)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T    T0 · T     O[T0/x] ` e1 : T1
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Example of Wrong Let Rule (2)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T    T0 · T     O[T0/x] ` e1 : T1

• The following bad program is well typed
                    let x : B Ã new A in x.b()
• Why is this program bad?
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Example of Wrong Let Rule (3)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T   T · T0     O[T/x] ` e1 : T1
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Example of Wrong Let Rule (3)

• Now consider a hypothetical wrong let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T   T · T0     O[T/x] ` e1 : T1

• The following good program is not well typed
let x : A Ã new B in {… x Ã new A; x.a(); }

• Why is this program not well typed?
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Typing Rule Notation

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:

– Makes the type system unsound 
(bad programs are accepted as well typed)

– Or, makes the type system less usable (incomplete)
(good programs are rejected)

• But some good programs will be rejected anyway 
– The notion of a good program is undecidable



#67

Assignment

More uses of subtyping:

[Assign]

O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0
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Initialized Attributes

• Let OC(x) = T for all attributes x:T in class C

– OC represents the class-wide scope

• Attribute initialization is similar to let, 
except for the scope of names

[Attr-Init]OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0
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If-Then-Else

• Consider:
if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type

• The best we can do statically is the smallest 
supertype larger than the type of e1 and e2
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If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to 
be both A or B
– Smallest supertype is P

      

P

A B
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Least Upper Bounds

• Define: lub(X,Y) to be the least upper 
bound of X and Y. lub(X,Y) is Z if
– X · Z Æ Y · Z

Z is an upper bound

– X · Z’ Æ Y · Z’ ⇒ Z · Z’
Z is least among upper bounds

• In Cool, the least upper bound of two types 
is their least common ancestor in the 
inheritance tree



#72

If-Then-Else Revisited

[If-Then-Else]

O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool

O ` e1 : T1

O ` e2 : T2
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Case

• The rule for case expressions takes a lub 
over all branches

[Case]

O ` case e0 of x1:T1 ) e1; 

       …; xn : Tn ) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’

…
O[Tn/xn] ` en : Tn’
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Next Time

• Type checking method dispatch

• Type checking with SELF_TYPE in COOL
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Homework
• Today: WA3 due
• Get started on PA4

– Checkpoint due Oct 14

• Before Next Class: Read Chapter 7.2
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