

Outline

e Review of bottom-up parsing

« Computing the parsing DFA

- Closures, LR(1) Items, States | Cpp|| ER A|ERT!

- Transitions o

e Using parser generators /\
- Handling Conflicts

CNAPE KILLS TRINITY
WITH ROSERUD!

In One Slide

« An LR(1) parsing table can be constructed
automatically from a CFG. An LR(1) item is a
pair made up of a production and a lookahead
token; it represents a possible parser context.
After we extend LR(1) items by closing them
they become LR(1) DFA states. Grammars can
have shift/reduce or reduce/reduce conflicts.
You can fix most conflicts with precedence
and associativity declarations. LALR(1) tables
are formed from LR(1) tables by merging
states with similar cores.

#3

Bottom-up Parsing (Review)

e A bottom-up parser rewrites the input string
to the start symbol

e The state of the parser is described as
aAry
-« is a stack of terminals and non-terminals
-y is the string of terminals not yet examined

o Initially: » x,x, . . . X

n

#4

Shift and Reduce Actions (Review)

o Recall the CFG: E — int | E + (E)
e A bottom-up parser uses two kinds of actions:

« Shift pushes a terminal from input on the stack
E+(int) O E+ (int»)

e Reduce pops 0 or more symbols off of the stack
(production RHS) and pushes a non-terminal on
the stack (production LHS)

E+(E+(E)») 0O E+(E»)

#5

Key Issue:
When to Shift or Reduce?

e |ldea: use a finite automaton (DFA) to decide when
to shift or reduce

- The input is the stack
- The language consists of terminals and non-terminals

 We run the DFA on the stack and we examine the
resulting state X and the token tok after »

- If X has a transition labeled tok then shift
- If X is labeled with “A — 3 on tok” then reduce

#6

LR(1) Parsing. An Example

» int + (int) + (int)S shift
int » + (int) + (int)S E — int
E» + (int) + (int)S shift(x3)
E+ (int»)+ (int) E — int
E+(E»)+ (int)S shift
E+(E)» + (int)S E — E+(E)
E» + (int)S shift (x3)
E+ (int »)S E —int
E+ (E»)S shift
E+(E)» S E — E+(E)
Ex» S accept

#7

End of review

SORGE CHAM B 2007

WWwW, PHDCOMICS, COM

Key Issue: How is the DFA
Constructed?

e The stack describes the context of the parse
- What non-terminal we are looking for
- What production rhs we are looking for
- What we have seen so far from the rhs

g._ﬂ File Edit View Insert Debugger Project Runm Window Help

IC

New cul |- oo - R2|| @@k Of00%]| ab =T || F | »
Mew document from template. ..
(will be populated by IDR._FILE_NEW at runtime) |
= Open... Ctrl+0
Close Cirl -+
e Chel+5
Save As...
Saye JEErT s,

#9

b

bdX
(x-a)* + b?

j LF."H-'}T'ﬁ-bt
\ s bn-uuch.gl trem helow, buX M‘i\""‘ﬂﬂl

aleve
The nlci&*t

LR(1) Table Construction

Three hours later, you can finally parse E —+ E + E | int

#10

Parsing Contexts

E
e Consider the state: /

nt + (int)+ (Int)

I

- The stack is E + (»int)+ (int)
e Context: ed o
: ed dot =
- We are looking foranE - E+ (e E) where we are.
e Have have seen E + (from the right-hand side

- We are also looking forE — eintorE — &E + (E)
e Have seen nothing from the right-hand side

e« One DFA state must thus describe several contexts

#11

LR(1) Items

« An LR(1) item is a pair:
X — Oef3, a

- X = af} is a production
- ais a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal

o [X — 0e[3, a] describes a context of the parser
- We are trying to find an X followed by an a, and
- We have a already on top of the stack

- Thus we need to see next a prefix derived from [3a

#12

Note

« The symbol » was used before to separate the
stack from the rest of input

- o » Y, where a is the stack and y is the
remaining string of terminals

e In LR(1) items o is used to mark a prefix of a
production rhs:

X — aef3, a
- Here [3 might contain non-terminals as well
e |[n both case the stack is on the left

#13

Convention

« We add to our grammar a fresh new start
symbol S and a production S — E

- Where E is the old start symbol
- No need to do this if E had only one production

e The initial parsing context contains:

S—>eE,S

- Trying to find an S as a string derived from ES
- The stack is empty

#14

LR(1) Items (Cont.)

e In context containing
E—-E+e(E), +

- If (follows then we can perform a shift to context
containing

E—-E+(eE), +
e In context containing
E—-E+(E)e, +
- We can perform a reduction withE — E + (E)

- But only if a + follows
#15

LR(1) Items (Cont.)

o Consider a context with the item
E—-E+(E), +
 We expect next a string derived fromE) +

e There are two productions for E
E—int and E—E+ (E)

« We describe this by extending the context
with two more items:

E— eint,)
E—>eE+(E),)

#16

The Closure Operation

e The operation of extending the context with
items is called the closure operation

Closure(ltems) =
repeat
for each [X — aeY[3, a] in Items

for each production Y — y
for each b € First(3a)
add [Y — ey, b] to Items

until Items is unchanged 7

Constructing the Parsing DFA (1)

e Construct the start context:

Closure({S — eE, $}) = S oF, $
E — eE+(E), $
E — eint, $
E — oE+(E), +
« We abbreviate as: E — eint, +
S > eE, $

E — oE+(E), $/+
E — eint, $/+

#18

FLANNING

Constructing the Parsing DFA (2)

« An LR(1) DFA state is a closed set of LR(1)
items

- This means that we performed Closure

. The start state contains [S — eE, $]

e A state that contains [X — ae, b] is labeled
with “reduce with X — o on b”

 And now the transitions ...

#20

The DFA Transitions

e A state “State” that contains [X — aey[3, b]

has a transition labeled y to a state that
contains the items “Transition(State, y)”

- y can be a terminal or a non-terminal

Transition(State, y) =
Items < 0

for each [X — aeyf, b] € State

add [X — ayef3, b] to Items

return Closure(ltems) 41

LR(1) DFA Construction Example

S —>eE, $
E — oE+(E), $/+
E — eint, $/+

0

#22

LR(1) DFA Construction Example

S ek, $
E — oE+(E), $/+
E— -in{, $/+

0

\E

int

1

#23

LR(1) DFA Construction Example

S —>eE, $
E — oE+(E), $/+
E— oin{, $/+

0

\E

int

1

E — inte, $/+

#24

LR(1) DFA Construction Example

S —>eE, $
E — oE+(E), $/+
E— cint, $/+

0

\E

int

1

E — inte, $/+

E — int
on$, +

#25

LR(1) DFA Construction Example

S —eE, $

0

E — oE+(E), $/+
E— cinT, $/+

\ E

S — Eo, $
E — Ee+(E), $/+

int

1

E — inte, $/+

E — int
on$, +

#26

LR(1) DFA Construction Example

N\
S —>eE, $ 0 ! E — inte, $/+ E — int
E — oE+(E), $/+[int : on$,+
E— cinT, $/+

2 \E /
S—>Eo,$

E — Ee+(E), $/+
accept

on $

#27

LR(1) DFA Construction Example

N\
S —>eE, $ 0 ! E — inte, $/+ E — int
E — oE+(E), $/+[int : on$,+

E — einf, $/+ E — E+e (E), $/+||3
5 \ E /
S—Ee, $

E — Ee+(E), $/+
accept

on $

#28

LR(1) DFA Construction Example

N\
S —>eE, $ 0 ! E — inte, $/+ E — int
E — oE+(E), $/+[int : on$,+

E o oint, $/+ E — E+e (E), $/+ 3
: \E / .
S —+Ee, $ j(

E — Ee+(E), $/+
accept

on $

#29

LR(1) DFA Construction Example

S —eE, $

0 1

E — oE+(E), $/+
E— ‘i”T' $/+

2 \E

E — inte, $/+| E—int

int

on$, +

E — E+e (E), $/+

3

S — Eo, $
E — Ee+(E), $/+

7

I

accept

on $

E — E+(eE), $/+

E — eE+(E),)/+
E — eint,)/+

#30

LR(1) DFA Construction Example

N\
S —>eE, $ O : E — inte, $/+ E = int
E — eE+(E), $/+[int , on3, +
E — einf, $/+ E — E+e (E), $/+]|3

2 \,E /
S—>Eo,$

I

E — Ee+(E), $/+

accept
on$ /

E — E+(eE), $/+ |4
E— oE+(E))/ +

#31

LR(1) DFA Construction Example

N\
S —>eE, $ O : E — inte, $/+ E = int
E — eE+(E), $/+[int , on3, +
E — einf, $/+ E — E+e (E), $/+]|3

2 \,E /
S—>Eo,$

I

E — Ee+(E), $/+

accept
on$ /

E — E+(eE), $/+ |4
E— oE+(E))/ +

5

E — inte,)/+

#32

LR(1) DFA Construction Example

N\
S —>eE, $ O : E — inte, $/+ E = int
E — eE+(E), $/+[int , on3, +
E — einf, $/+ E — E+e (E), $/+]|3

2 \,E /
S—>Eo,$

I

E — Ee+(E), $/+

accept
on$ /

E — E+(eE), $/+ |4
E— oE+(E))/ +

in’r\ 5

E — inte,)/+| E7nt

on), +

#33

LR(1) DFA Construction Example

S —>eE, $ 0 ! E — inte, $/+ E — int
E — oE+(E), $/+ int on$,+
E—~ ""T\' §/+ E — E+e (E), $/+|3
S > Ee, $ / 1(
E — Ee+(E), $/+ E — E+(eE), $/+
cccept @
on$ E— -mt\)/+
6 E — E+(Eo), $/+ in’r\ 5
E - Ex(E),)/ £ inte,)

and so on...

E - int
on), +

#34

Q: Movies (282 / 842)

e This post-apocalyptic 1984
animated film by Studio Ghibli
features a peace-loving, wind-
riding princess who attempts to
understand the apparently-evil
insects and spreading fungi of
her world while averting a war.

Q: Books (722 / 842)

* The 1995 comedy film Clueless
starring Alicia Silverstone was
based on this Jane Austen
novel.

Q: Books (736 / 842)

e Give the last word in 2 of the
following 4 young adult book titles:

- Beverly Cleary Ramona Quimby, Age

- Judy Blume's Tales of a Fourth
Grade

- Lynne Reid Banks's The Indian in the
- Lloyd Alexander’s The High

Q: Games (522 / 842)

 In this 1982 arcade game
features lance-wielding knights
mounted on giant flying birds
and dueling over a pit of lava.
Destroying an enemy knight
required ramming it such that

your lance was higher than the
enemys.

LR Parsing Tables. Notes

e Parsing tables (= the DFA) can be constructed
automatically for a CFG

- “The tables which cannot be constructed are
constructed automatically in response to a CFG
input. You asked for a miracle, Theo. | give you
the L-R-1.” - Hans Gruber, Die Hard

e But we still need to understand the
construction to work with parser generators

- e.g., they report errors in terms of sets of items
 What kind of errors can we expect?

#39

Sometimes, you should back down.

Shift/Reduce Conflicts

e If a DFA state contains both
[X — aeaf3, b] and [Y — Ye, a]

e Then on input “a” we could either
- Shift into state [X — aae[3, b], or
- Reduce withY — vy

e This is called a shift-reduce conflict

#41

Shift/Reduce Conflicts

« Typically due to ambiguities in the grammar

e Classic example: the dangling else
S—» ifEthenS | ifEthenSelseS | OTHER

e Will have DFA state containing
[S — if E then Se, else]
[S — if E then Se else S, X]

e If else follows then we can shift or reduce

e Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

#42

More Shift/Reduce Conflicts

e Consider the ambiguous grammar
E—-E+E|E*E | int
« We will have the states containing
[E—- E*e E, +] [E— E*Ee, +]
[E—>eE+E, +] OF[E—> Ee +E, +]

e Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +

#43

More Shift/Reduce Conflicts

e |In bison declare precedence and associativity:

%lLeft +
%Sleft * // high precedence

« Precedence of a rule = that of its last terminal
- See bison manual for ways to override this default

e Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

#44

Using Precedence
to Solve S/R Conflicts

e Back to our example:
[E—- E*e E, +] [E— E*Ee, +]
[E—>eE+E, +] OE[E— Ee +E, +]

e Will choose reduce on input + because
precedence of rule E — E * E is higher than of

terminal +

#45

Using Precedence
to Solve S/R Conflicts

e Same grammar as before
E—-E+E|E*E | int
e We will also have the states
[E— E+eE, +] [E— E + Ee, +]
[E>eE+E,+] Of [E— Ee+E, +]

 Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

#46

Using Precedence
to Solve S/R Conflicts

Back to our dangling else example
[S — if E then Se, else]
[S — if E then Se else S, X]
Can eliminate conflict by declaring else with
higher precedence than then
- Or just rely on the default shift action

But this starts to look like “hacking the parser”

Avoid overuse of precedence declarations or you’ll
end with unexpected parse trees

- The kiss of death ...

#47

Reduce/Reduce Conflicts

e If a DFA state contains both
[X — ae, a] and [Y — e, a]

- Then on input “a” we don’t know which
production to reduce

e This is called a reduce/reduce conflict

#48

Reduce/Reduce Conflicts

e Usually due to gross ambiguity in the grammar

e Example: a sequence of identifiers
S—ge | id | idS

e There are two parse trees for the string id
S— id
S— idS — id

« How does this confuse the parser?

#49

More on Reduce/Reduce Conflicts

o Consider the states [S— ide, $]
[S>— oS, §] [S— ide S, §]
[S— o, S] O [S— e, S]
[S— eid, §] [S— eid,]
[S— eidS, §] [S— eidS, S]
« Reduce/reduce conflict on input $
S’—>S—id

S>>5S—>idS— id

 Better rewrite the grammar: S—¢ |idS$

#50

Can’s someone learn this for me?
i T YL T

No, you can't have a neural network

f\z : 1l
;:‘-* N ' . |

Using Parser Generators

« Parser generators construct the parsing DFA
given a CFG

- Use precedence declarations and default
conventions to resolve conflicts

- The parser algorithm is the same for all
grammars (and is provided as a library function)

e But most parser generators do not construct
the DFA as described before

- Why might that be?

#52

Using Parser Generators

« Parser generators construct the parsing DFA
given a CFG

- Use precedence declarations and default
conventions to resolve conflicts

- The parser algorithm is the same for all
grammars (and is provided as a library function)

e But most parser generators do not construct
the DFA as described before

- Because the LR(1) parsing DFA has 1000s of states
even for a simple language

#53

LR(1) Parsing Tables are Big

e But many states are similar, e.g.

1

E — inte, $/+

E — int
on$, +

and

5

E — inte,)/+

E - int
on), +

e ldea: merge the DFA states whose items

differ only in the lookahead tokens
- We say that such states

e We obtain

1l

E — inte, $/+)

E —int

on$,+,)

nave the same core

#54

The Core of a Set of LR Items

e Definition: The core of a set of LR items is
the set of first components

- Without the lookahead terminals

e Example: the core of
{[X—= aef3, b], [Y — Ye0, d]}
is
X = aef, Y — Yeb}

#55

LALR States

e Consider for example the LR(1) states

{[X— ae, a], [Y — Be, cl}

{[X— ae, b], [Y — Bo, d]}
e They have the same core and can be merged
e And the merged state contains:

{[X—= ae, a/b], [Y — Be, c/d]}

e These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10x fewer LALR(1) states than LR(1)

#56

LALR(1) DFA

» Repeat until all states have distinct core
- Choose two distinct states with same core

- Merge the states by creating a new one with the
union of all the items

- Point edges from predecessors to new state
- New state points to all the previous successors

QG?G
© E

#57

Example LALR(1) to LR(1)

#58

The LALR Parser
Can Have Conflicts
e Consider for example the LR(1) states
{[X— ae, a], [Y — Be, b]}
{[X— ae, b], [Y — Bo, a]l}
e And the merged LALR(1) state
{IX = ae, a/b], [Y — Be, a/b]}
e Has a new reduce-reduce conflict

e In practice such cases are rare

#59

LALR vs. LR Parsing

e LALR languages are not natural
- They are an efficiency hack on LR languages

e Any “reasonable” programming language has
a LALR(1) grammar

- Java and C++ are presumed unreasonable ...

e LALR(1) has become a standard for
programming languages and for parser
generators

#60

A Hierarchy of Grammar Classes

Unambiguous Grammars

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

From Andrew Appel,
“Modern Compiler
Implementation in Java”

#61

Notes on Parsing

e Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- LALR(1) parser generators

 Now we move on to semantic analysis

#62

Take a bow, you survived!

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
Due to LALR Conversion

(from the bison manual)

#64

Strange Reduce/Reduce Conflicts

e Consider the grammar

S—PR, NL— N | N, NL
P—-T | NL:T R—T |N:T
N — id T —id

« P - parameters specification

e R - result specification

« N - a parameter or result name
e T -atype name

e NL - a list of names

#65

Strange Reduce/Reduce Conflicts

e INnPanidis a
- N when followed by , or :
- T when followed by id

eINnRanidisa
- N when followed by :
- T when followed by ,

e This is an LR(1) grammar.
e But it is not LALR(1). Why?

- For obscure reasons

#66

A Few LR(1) States

P_.eT id |1
P_eNL:T id T - ide id | 3 LA:C.F :eduse"/r'educe
i id e conflict on ",
NL—»QN :/N_) Id
NL — o N NL : N - ide
N—>0id v
N - eid LALR mer > y /
T o eid id N - ide /,
R—)QT , 2 . T—> |d. , 4
ld7
R-eN:T ,/Naid.
T - eid
N—)Cid

#67

What Happened?

e Two distinct states were confused because
they have the same core

e Fix: add dummy productions to distinguish the
two confused states

e E.g., add
R — id bogus
- bogus is a terminal not used by the lexer

- This production will never be used during parsing
- But it distinguishes R from P

#68

A Few LR(1) States After Fix

P_oeT id
P-eNL:T id
NL - eN
NL -~ eN,NL :
N - eid
N - eid
= . d

s

Different cores 0 no LALR merging

1

id

N - ide
N - ide

R . T

R .N:T

R - .id bogus ,
T-.id

2 7
%

T—> |d.
N - ide
R - id e bogus ,

N - .id

#69

Homework

e Today: WA2 Was Due

e Thursday: Chapter 3.1 - 3.6
- Optional Wikipedia Article

e Tuesday Sep 29 - Midterm 1 in Class
« Wednesday: PA3 due
- Parsing!

e Thursday: WA3 due

#70

