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       PA0, PA1

• Although we have included 
the tricky “file ends without 
a newline” testcases in 
previous years, students 
made good cases against 
them (e.g., they test I/O 
and not the algorithm) so we 
are dropping them from 
PA1. 

• You can submit new 
rosetta.yada files for PA1, 
so you can fix errors from 
PA0. 
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Reading Quiz!
• Are practical parsers and scanners based on deterministic or 

non-deterministic automata?

• How can regular expressions be used to specify nested 
constructs?

• How is a two-dimensional transition table used in table-
driven scanning? 
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Credits
• The majority of you (25/31) are signed up for 2 

credits of CS 4993-04
– Do a big Compiler project, attend “Discussion 

Section”, get 5 credits total
– Similar to Cornell's approach, etc. 

• How many of you are planning to take 
Compilers?
– Odds are “50-50” it will be offered in the Spring
– Don't take Compilers if you're taking 5 credits here

• Don't want five credits / will take Compilers? 
– Come see me in person, we'll work something out.
– Different assignment list, etc. 
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Cunning Plan

• Regular expressions provide a concise 
notation for string patterns

• Use in lexical analysis requires small 
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Require only single pass over the input
– Few operations per character (table lookup)
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One-Slide Summary

• Finite automata are formal models of 
computation that can accept regular languages 
corresponding to regular expressions. 

• Nondeterministic finite automata (NFA) 
feature epsilon transitions and multiple 
outgoing edges for the same input symbol.

• Regular expressions can be converted to NFAs.
• Tools will generate DFA-based lexer code for 

you from regular expressions. 
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Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
– An input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F µ S

– A set of transitions state → input state
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Finite Automata

• Transition

s1 →a s2

• Is read
In state s1 on input “a” go to state  s2

• If end of input (or no transition possible)
– If in accepting state ) accept

– Otherwise ) reject 
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Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a
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A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can 
follow transitions labeled with the characters 
in the string from the start to some accepting 
state

1
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Another Simple Example

• A finite automaton accepting any number of 
1’s followed by a single 0

• Alphabet Σ = {0,1}

• Check that “1110” is accepted but “110…” is 
not 

0

1
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And Another Example
• Alphabet Σ = {0,1}

• What language does this recognize?

0

1

0

1

0

1
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And Another Example

• Alphabet still Σ = { 0, 1 }

• The operation of the automaton is not 
completely defined by the input
– On input “11” the automaton could be in either 

state 

1

1
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Epsilon Moves

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B 
without reading input

A B
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Deterministic and 
Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state 

– No ε-moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a 

given state

– Can have ε-moves

• Finite automata have finite memory
– Need only to encode the current state
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Execution of Finite Automata

• A DFA can take only one path through the 
state graph
– Completely determined by input

• NFAs can choose
– Whether to make ε-moves

– Which of multiple transitions for a single input to 
take
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Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state
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NFA vs. DFA (1)

• NFAs and DFAs 
recognize the same set 
of languages (regular 
languages)
– They have the same 

expressive power

• DFAs are easier to 
implement
– There are no choices to 

consider
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NFA vs. DFA (2)

• For a given language the NFA can be simpler 
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA
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Regular Expressions to Finite 
Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA
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Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp A        

A

• For ε
ε

• For input a
a
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Regular Expressions to NFA (2)

• For AB
A Bε

• For A | B

A

B

ε
ε

ε

ε
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Regular Expressions to NFA (3)

• For A*
Aε

ε

ε
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Example of RegExp -> NFA 
Conversion

• Consider the regular expression
(1 | 0)* 1

• The NFA is

ε

1C E

0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J
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Break Time

• Students pick numbers 1-454 for
http://www.cs.virginia.edu/~weimer/english.html

• Start with 381 if you lake a PRNG ...

http://www.cs.virginia.edu/~weimer/english.html
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Overarching PlanOverarching Plan

RegularRegular
expressionsexpressions

NFANFA

DFADFA

LexicalLexical
SpecificationSpecification

Table-driven Table-driven 
Implementation of DFAImplementation of DFA

Thomas Cole – Evening in Arcady (1843)
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NFA to DFA: The Trick

• Simulate the NFA
• Each state of DFA 

= a non-empty subset of states of the NFA

• Start state 
= the set of NFA states reachable through ε-moves 

from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from the 

states in S after seeing the input a
• considering ε-moves as well
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NFA ! DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1
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NFA ! DFA: Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some 
subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many
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Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”

– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip 

to state Sk

– Very efficient
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Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10
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Implementation (Cont.)

• NFA ! DFA conversion is at the heart of tools 
such as flex or ocamllex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for 
space in the choice of NFA and DFA 
representations
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PA2: Lexical Analysis

• Correctness is job #1.
– And job #2 and #3!

• Tips on building large systems:
– Keep it simple
– Design systems that can be tested 
– Don’t optimize prematurely
– It is easier to modify a working system than to get 

a system working
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Lexical Analyzer Generator

• Tools like lex and flex and ocamllex will build 
lexers for you!

• You will use this for PA2

• I’ll explain ocamllex; others are similar
– See PA2 documentation

Lexer Source
Code

Lexical
Analyzer
Generator

List of Regexps
with code 
snippets
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Ocamllex “lexer.mll” file

{
(* raw preamble code

type declarations, utility functions, etc. *)
}
let re_namei = rei

rule normal_tokens = parse
re1 { token1 } 

| re2 { token2 }
and specialtokens = parse
| ren { tokenn }
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Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (*  /  *)
}
let digit = [‘0’ – ‘9’] 
rule initial = parse

‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

  let token_val = int_of_string token_string in
      Tok_Integer(token_val) } 
| _ { Printf.printf “Error!\n”; exit 1 } 
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Adding Winged Comments

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (*  /  *)
}
let digit = [‘0’ – ‘9’] 
rule initial = parse

“//” { eol_comment } (* why am I the “first” rule? *)
| ‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

  let token_val = int_of_string token_string in
        Tok_Integer(token_val) } 
| _ { Printf.printf “Error!\n”; exit 1 } 

and eol_comment = parse
  ‘\n’ { initial lexbuf }
| _ { eol_comment lexbuf } 
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Using Lexical Analyzer Generators

$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file … *) 
let file_input = open_in “file.cl” in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
| Tok_Divide -> printf “Divide Token!\n”
| Tok_Integer(x) -> printf “Integer Token = %d\n” x
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How Big Is PA2?

• The reference “lexer.mll” file is 88 lines
– Perhaps another 20 lines to keep track of input 

line numbers
– Perhaps another 20 lines to open the file and get 

a list of tokens
– Then 65 lines to serialize the output
– I’m sure it’s possible to be smaller!

• Conclusion:
– This isn’t a code slog, it’s about careful 

forethought and precision.

Think about:
quoted 
strings!
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Homework
• Wednesday: PA1 due
• Thursday: Chapters 2.4 – 2.4.1 (on website)


