Lexical Analysis

Finite Automata

(Part 2 of 2)

I SWEAR, IF T HAD
To ST THROUGH ONE
MORE POWERPOINT
PRESENTATION, T WAS
GEOINGE To SCREAM,

s

=

WELL, YOU'RE
HOME NOW.
Yol CAN
RELAX.

@,
T

o

2

MoM! DAD! T DuD

MY Book REPORT

WiTH POWERPOINT!
comE SEE!

@f

PAO, PA1

e Although we have included

the tricky “file ends without
a newline” testcases in
previous years, students
made good cases against
them (e.g., they test 1/0
and not the algorithm) so we
are dropping them from

You just like arguing, don't you.

PA1. L FLQWED
e You can submit new S [o peTs wust
rosetta.yada files for PA1, | BE ON_LEASH

so you can fix errors from | E R R A T A
PAO. oom for more complicated rules

Reading Quiz!

e Are practical parsers and scanners based on deterministic or

non-deterministic automata?

 How can regular expressions be used to specify nested

constructs?

e How is a two-dimensional transition table used in table-

driven scanning?

"ONCE UPON A TIME

THERE. WAS.."

HAS THIS BOOK
BEEN A BEST

SELLER? WAS THE

AUTHOR WON A
PULITZER™ DID
THE NEW YORK

TIMES LIKE 1T?

T ONWY{ WANT STORIES THAT

COME HIGHIN RECOMMENDED.

ARE THERE ANY LAUDATORY

QUOTES ON THE DUST
JACKET?

UPON A TIME
THERE. WAS A
NOISY KID WHO
STARTED GOING

TO BED WITHOUT
A STORY."

AMEM.,"ONCE. | HAS THIS BOOK

BEEN MADE
INTO A MOYIE?
CULD WE BE

WATCHING
THIS ON

ViIDEO?

Credits

e The majority of you (25/31) are signed up for 2
credits of CS 4993-04

- Do a big Compiler project, attend “Discussion
Section”, get 5 credits total

- Similar to Cornell's approach, etc.
« How many of you are planning to take
Compilers?
- Odds are “50-50” it will be offered in the Spring
- Don't take Compilers if you're taking 5 credits here

e Don't want five credits / will take Compilers?

- Come see me in person, we'll work something out.

- Different assignment list, etc. N

Cunning Plan

e Regular expressions provide a concise

notation for string patterns
e Use in lexical analysis requires | usw uaesou e

SUPPOSE ALL MATTER AND ENERGY
15 MADE OF TINY, VIBRATING "STRINGS.

extensions \ S
- To resolve ambiguities oo,/ Y'
- To handle errors j\) %

GTRING THEORY GUMMARIZED:

e Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)

#5

One-Slide Summary

e Finite automata are formal models of
computation that can accept regular languages
corresponding to regular expressions.

 Nondeterministic finite automata (NFA)
feature epsilon transitions and multiple
outgoing edges for the same input symbol.

e Regular expressions can be converted to NFAs.

e Tools will generate DFA-based lexer code for
you from regular expressions.

#6

Finite Automata

e Regular expressions = specification
e Finite automata = implementation

e A finite automaton consists of

- An input alphabet Z

- A set of states S
- A start state n
- A set of accepting states F C S

- A set of transitions state - "Put state

#7

Finite Automata

e Transition
S, —» a S,
e Is read
In state s, on input “a” go to state s,

e If end of input (or no transition possible)
- If in accepting state = accept
- Otherwise = reject

#8

Finite Automata State Graphs

o A state Q

 The start state /Q
e An accepting state @

a

o A transition Q/\Q

#9

A Simple Example

“1 »

e A finite automaton that accepts only
OO

e A finite automaton accepts a string if we can
follow transitions labeled with the characters
in the string from the start to some accepting
state

#10

Another Simple Example

A finite automaton accepting any number of
1’s followed by a single 0

e Alphabet 2 = {0,1}
1

H0

e Check that “1110” is accepted but “110...” is
not

#11

And Another Example
e Alphabet 2 = {0,1}

 What language does this recognize?
| 0

Web Images Video MNews Maps more »

GO {._ jg[e how to hook up a hose to a kitchen sink Search

Web

Did you mean: how to hook up a horse to a kitchen sink

And Another Example

e AlphabetstillZ={0, 1}
1

0

e The operation of the automaton is not
completely defined by the input

- On input “11” the automaton could be in either
state

#13

Epsilon Moves

e Another kind of transition: e-moves
)
« Machine can move from state A to state B
without reading input

Deterministic and
Nondeterministic Automata

e Deterministic Finite Automata (DFA)
- One transition per input per state
- No e-moves

e Nondeterministic Finite Automata (NFA)

- Can have multiple transitions for one input in a
given state

- Can have s-moves

e Finite automata have finite memory
- Need only to encode the current state

#15

Execution of Finite Automata

e A DFA can take only one path through the
state graph

- Completely determined by input

e NFAs can choose
- Whether to make -moves

- Which of multiple transitions for a single input to
take

#16

Acceptance of NFAs

« An NFA can get into multiple states

/8/"\.0/1\©

0

e Input: 1 0 1

e Rule: NFA accepts if it can get in a final state

#17

NFA vs. DFA (1)

F, o I"'_' A =gy 4 .
[=
R A

g T

e NFAs and DFAs _
recognize the same set |
of languages (regular
languages)

- They have the same
EXPressive power

e DFAs are easier to
implement

- There are no choices to
consider

NFA vs. DFA (2)

e For a given language the NFA can be simpler
than the DFA

1

0 0
NFA
0
() 0 0 G
DFA ‘ C

e DFA can be exponentially larger than NFA

#19

Regular Expressions to Finite
Automata
e High-level sketch

/ NFA \
Regular

expressions DFA

|

Lexical Table-driven
Specification Implementation of DFA

#20

Regular Expressions to NFA (1)

e For each kind of rexp, define an NFA
- Notation: NFA for rexp A

* Fore
~-O—-0
* For input a

~Ot0

#21

Regular Expressions to NFA (2)

e For AB

~» O=Cr O
%f©

#22

Regular Expressions to NFA (3)

ok

° FOI‘ A* '/
:U
DO YOU BELIEVE OUR

DESTIN\ES ARE CONTROUED
BY THE STARS 7

NO, I THINK WE CAN
DO WHATEVER WE WANT

WITH QUR LINES.

NOT TO HEAR MOM
AND DAD TELL \T.

Example of RegExp -> NFA
Conversion

e Consider the regular expression
(1]10)*1

e The NFA is
Y 81 :
(A} B @ﬁg (EEyE e

!@ 3

#24

Break Time

e Students pick numbers 1-454 for
http://www.cs.virginia.edu/~weimer/english.html

o Start with 381 if you lake a PRNG ...

#25

http://www.cs.virginia.edu/~weimer/english.html

‘Regular
expressign’

Lexicalm " mAmmn *Table driven ./
pPeciiicalion. s '*-Amplémentatlon of DFA

Thomas Cole — Evening in Arcady (18%%)

NFA to DFA: The Trick

e Simulate the NFA

e Each state of DFA
= a hon-empty subset of states of the NFA

e Start state

= the set of NFA states reachable through £-moves
from NFA start state

« Add a transition S 25’ to DFA iff

- S’ is the set of NFA states reachable from the
states in S after seeing the input a

e considering e-moves as well
#27

NFA — DFA Example

#28

NFA — DFA: Remark

« An NFA may be in many states at any time
« How many different states?

o If there are N states, the NFA must be in some
subset of those N states

« How many non-empty subsets are there?
- 2N - 1 = finitely many

#29

Implementation

e A DFA can be implemented by a 2D table T
- One dimension is “states”
- Other dimension is “input symbols”

- For every transition 5. - 25, define T[i,a] = k

e DFA “execution”

- If in state S, and input a, read T[i,a] = k and skip
to state S,

- Very efficient

#30

Table Implementation of a DFA

c|d|w»v
—|H|d|o

#31

Implementation (Cont.)

e NFA — DFA conversion is at the heart of tools
such as flex or ocamllex

e But, DFAs can be huge

e In practice, flex-like tools trade off speed for
space in the choice of NFA and DFA
representations

#32

« Correctness is job #1. ' e
- And job #2 and #3! | | et

» Tips on building large systems: '
- Keep it simple
- Design systems that can be tested
- Don’t optimize prematurely

- It is easier to modify a working system than to get
a system working

#33

Lexical Analyzer Generator

e Tools like lex and flex and ocamllex will build
lexers for you!

e You will use this for PA2

Lexical
— Analyzer -

o I’ll explain ocamllex; others are similar
- See PA2 documentation

#34

Ocamllex “lexer.mll” file

{

(* raw preamble code
type declarations, utility functions, etc. *)

3

let re_name, = re,

rule normal_tokens = parse
re. { token, }

| re, { token, }
and special,okens = parse
| re, { token_ }

#35

Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 %)

| Tok_Divide * 7 %)
3
let digit = [‘0’ - ‘9’]
rule initial = parse
‘I’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
let token_val = int_of_string token_string in
Tok_Integer(token_val) }
{ Printf.printf “Error!\n”; exit 1 }

#36

Adding Winged Comments

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide * 7%
3

let digit = [0’ - ‘9]
rule initial = parse
“I1” { eol_comment } (* why am | the “first” rule? *)

| </ { Tok_Divide }

| digit digit* { let token_string = Lexing.lexeme lexbuf in
let token_val = int_of_string token_string in
Tok_Integer(token_val) }

| _ { Printf.printf “Error!\n”; exit 1 }

and eol_comment = parse
‘\n’ { initial lexbuf }
| _ { eol_comment lexbuf }

#37

Using Lexical Analyzer Generators

S ocamllex lexer.mill
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file ... ¥)

let file_input = open_in “file.cl” in

let lexbuf = Lexing.from_channel file_input in

let token = Lexer.initial lexbuf in

match token with

| Tok_Divide -> printf “Divide Token!\n”

| Tok_Integer(x) -> printf “Integer Token = %d\n” x

#38

How Big Is PA2?

e The reference “lexer.mll” file is 88 lines

- Perhaps another 20 lines to keep track of input
line numbers

- Perhaps another 20 lines to open the file and get
a list of tokens

- Then 65 lines to serialize the output
- I’m sure it’s possible to be smaller!

e Conclusion:

- This isn’t a code slog, it’s about careful
forethought and precision.

Think about:
quoted
strings!

#39

Homework

« Wednesday: PA1 due
e Thursday: Chapters 2.4 - 2.4.1 (on website)

#40

