Exam 1 Guide
Outline

• Class Average: 83 (59 to 102)
• Grades visible on Automatic Adjudicator
• A curve will be applied later
• Think carefully before asking for a regrade
 - We will look carefully at your answer!
• Not wasting our time: 3/10
Question 1

- Terminals: -1, Epsilon -3, Recursion -3, Correctness -2, Expression to #t/#f only -2

Define a BNF grammar rule for the AndExpression.

AndExpression ::= \((\text{and} \, \text{BooleanExpressions}) \)

BooleanExpressions ::= ε | BooleanExpressions BooleanExpression

Boolean Expression ::= #t | #f
Question 2

- Something about #t/#f vs. all values: -5
- Vague right idea, w/o example: -2
- Reversed: -1

By counterexample:
and procedure: (and #f (* ++)) evaluates to an error
and special form: (and #f (* ++)) evaluates to #f

The special form evaluates to #f because the first subexpression is false. The procedure attempts evaluating (* ++) since a procedure has to evaluate its arguments first.
Question 2

• Another phrasing:

According to Professor Wrongo’s definition, and is evaluated as a normal expression would be; meaning, every subexpression is evaluated and then the resulting procedure from subexpression one is applied to the values resulting from the others. However, in the and-expression special form, the predicate expression is always evaluated while only one of the subsequent subexpressions is evaluated. This means that while using Professor Wrongo’s definition to evaluate \((\text{and} \ (> 3 \ 4) \ (* + +))\) would return an error, evaluating the same expression in the and-expression special form would return \#f. and-expression: Is \((> 3 \ 4)\) false? Yes. So the value of the and-expression is false. There is no need to even consider the second subexpression.
Question 3

• (= low high) : -2, low as base result : -1, if in recursive case : -2, recursive call : -3, infinite loop: -3, non-linear time: -2, explanation: -1

(define (find-maximizing-input f low high)
 (if (= low high) +2 base case
 (low +))
 ; x becomes the max value for the rest of the list
 (let ((x (find-maximizing-input f (low +1) high)))
 (if (> (f x) (f low)) x low)))
 ; if the function applied to x is greater than the function applied to low, return x; if not, return low.

; This should be in Θ(n) because it only calls find-maximizing-input once, I think.
Question 4

- \(\text{lambda} : -5, \ (x) : -2, \ (+ \ x \ n) : -3 \)

\[
\text{(define (make-incrementer n)} \\
\text{ (lambda (x) (+ x n)))}
\]
Question 5

- loosely -2 per wrong element
Question 5

- This one is not Theta(n), but is still full credit. Also: sort and take the car.

```
(define (find-worst lst cf)
  (if (null? (car lst))
      (car lst)
      (if (cf (car lst) (find-worst (cdr lst) cf))
          (find-worst (cdr lst) cf)
          (car lst))
  )
```

;; Base case - if there is only one element, return it.
;; Check if the first is worse than the worst of the rest of the list.
;; if it isn't, return the recursive call to get what was so "bad" if it is, return it.
Question 6

- 1 point per correct yes/no
- 1 point per correct explanation
- weak overall: -1 or -2
- Gotcha: n0 \(\geq\) 1 for Part 3

\[
\text{Is } n \text{ in } O(2n+5) \text{? Why or why not? } \rightarrow \text{Yes}
\]
\[
c = 1 \\
n_0 = 1
\]

\[
\text{Is } n^2 \text{ in } O(2n+5) \text{? Why or why not? } \rightarrow \text{No}
\]

Regardless of the value of c, there will always come a point where \(n^2\) becomes greater than or equal to \((2n + 5)\).

\[
\text{Is } 4n^2 \text{ in } \Omega(n) \text{? Why or why not? } \rightarrow \text{Yes}
\]
\[
c = 1 \\
n_0 = 1
\]

\[
\text{Is } 4n^2 \text{ in } \Omega(n^3) \text{? Why or why not? } \rightarrow \text{No}
\]

Regardless of the value of c, there will always come a point where \(n^3\) becomes greater than or equal to \((4n^2)\).

\[
\text{Is } n\log n \text{ in } \Theta(n^2) \text{? Why or why not?}
\]

\[n\log n \text{ is in } O(n^2) \text{ for } c=1, n_0=1; n\log n \text{ is not in } \Omega(n^2) \text{ because } n^2 \text{ will always be greater than } n\log n.\]

\[n\log n \text{ is therefore not in } \Theta(n^2) \text{ since it is not in both } O(n^2) \text{ and } \Omega(n^2).\]

\[x \cdot n\log n = \log n^x \]
Question 7

- base case conditional: -2, base case result: -1, plus to combine results in recursive step: -2, use of eq?: -1, recursive call: -3, correct use of car/cdr: -1, other errors: -1

(define (count-matches lst1 lst2)
 (if (null? lst1)
 0
 (if (null? lst2)
 0
 (if (eq? (car lst1) (car lst2))
 (+ 1 (count-matches (cdr lst1) (cdr lst2)))
 (count-matches (cdr lst1) (cdr lst2))))))
Question 7

- Another writeup:

```scheme
(define (count-matches lst1 lst2)
  (if (or (null? lst1) (null? lst2))
      0
      (+ (compare (car lst1) (car lst2))
          (count-matches (cdr lst1) (cdr lst2))))
)

(define (compare a b)
  (if (eq? a b) 1 0))
```

good
Question 8

- base case conditional: -2, base case result: -1, use of pick-better or similar: -1, count-matches: -2, recursive call: -2, describe code without writing it: up to -3, did not “go both ways”: -1

8 (continued). Define your \texttt{find-best-alignment} procedure here:

\begin{verbatim}
(define (find-best-alignment-helper msg1 msg2)
 (if (or (null? msg1) (null? msg2))
 0
 (pick-better
 (count-matches msg1 msg2)
 (find-best-alignment-helper (cdr msg1) msg2))))

(define (find-best-alignment msg1 msg2)
 (pick-better
 (find-best-alignment-helper msg1 msg2)
 (find-best-alignment-helper msg2 msg1)))
\end{verbatim}
8 (continued). Define your find-best-alignment procedure here:

```
(define (find-best-alignment msg1 msg2)
  (begin
    (define (best-align msg1 msg2)
      (if (null? msg2)
        0
        (max (count-matches msg1 msg2)
             (best-align msg1 (cdr msg2))
             (max (best-align msg1 msg2) (best-align msg2 msg1))))
    (best-align msg1 msg2))
```

Question 8
Question 9

- Right answer: -5, right explanation: -5

My align procedure runs in $\Theta(1)$, which doesn't really affect the find-best-alignment.

According to the text, running time is based on the number of steps and the number of recursive applications.

Based on the code that I wrote, I would say that the running time is in $\Theta(n^2)$ because there is a recursive call that passes in the procedure count-matches. Count-matches deals with lists which puts it in $\Theta(n)$.

$\Theta(n)$ from the count-matches procedure $\times \Theta(n)$ from the recursion = $\Theta(n^2)$