Exam 1 Guide

Thayphere 01-23-2006

Outline

- Class Average: 83 (59 to 102)
- Grades visible on Automatic Adjudicator
- A curve will be applied later
- Think carefully before asking for a regrade - We will look carefully at your answer!
- Not wasting our time: 3/10

Question 1

- Terminals: -1, Epsilon -3, Recursion -3, Correctness -2, Expression to \#t/\#f only -2

Define a BNF grammar rule for the AndExpression.
AndExpression :-:~

AndEpression $\because=$ (and Boolean Expressions)
Boolean Expressions $::=\varepsilon \mid$ Bodean Expressions Boolean Expression
Boolean Expression $::=\# t \mid \# f$

Question 2

- Something about \#t/\#f vs. all values: -5
- Vague right idea, w/o example: -2
- Reversed: -1

By counter example
and procedure: (and \#f(+++1$)$ evaluates to an error and special form (and \#f $(*++1)$ evaluates to \# f

The special form evaluates to \#f because the first subexpression is false. The procedure attempts evaluating $e^{*++}+$) since a procedure has to evaluate its arguments first.

Question 2

- Another phrasing:

According to Professor Wrongo's definition, and is evaluated as a normal expression would be; meaning, every subexpression is evaluated and then the resulting procedure from subexpression one is applied to
 special form, the predicate expression is always evaluated while only one of the subsequent subexpressions is evaluated. This means that while using Professor Wrongo's definition to evaluate (and (> 3) (* $++)$) would return an error, evaluating the same expression in the and-expression special form would return \#f.
and-expression: Is (>34) false? Yes. So the value of the andexpression is false. There is no need to even consider the second subexpression.

Got cut \rightarrow wrongo's def: evaluate $(\rightarrow 34) \rightarrow \# f$; evaluate $(* *+t) \rightarrow E R R R R$

Question 3

- (= low high) : -2 , low as base result : -1 , if in recursive case : -2 , recursive call : -3 , infinite loop: -3 , non-linear time: -2 , explanation: -1
(define (find-maximizing-input I low high)
(if (= low high) +2 is base case ii recursive coll will increment through the range inti low $=$ high low +1
i; x becomes the max
value for the rest of the list
$($ let $(x$ (find-maximizang-input $f($ low +1$)$ high $)))$

in) if the function applied to x is greater than the faction applied to low, return x; if not, retie low.
ii this should be in $\Theta(n)$ because it only calls
find-maximizing-input once, 1 think.

Question 4

- lambda : $-5,(\mathrm{x}):-2,(+\mathrm{x}$ n) : -3

(define (make-incrementer n) (lambda (x) (+ x n))

Question 5

- loosely -2 per wrong element
(define (find-worst lst cf)
(if $(=1($ length ist $))$
(cat $15 t$)
(pick-worst cfik
(car 1st)
(find-werst (edr 1st) of))))
(define (pick-werst of numl num 2)
(if (of numl num 2) num 1 num 2)) This is pick best

Question 5

- This one is not Theta(n), but is still full credit. Also: sort and take the car.
(define (find-worst list cf)
(if (null? (car list))
(car list)
(if (cf (car list) (find-warst-(cor 1 st) $c f$)) (find-worst (cdr lIst) of) (car lIst)
ii Base case -if there is only one element, return it
ii check if the first is worser than the worst of the rest of the lis if it isn't, return the recursive call to aet what was so "bad" if it is, retum

Is n in $\mathrm{O}(2 n+5)$? Why or why not? -oyes

Question 6

- 1 point per correct yes/no
- 1 point per correct explanation
- weak overall:
-1 or -2
- Gotcha: n0 >= 1 for Part 3

$\left\{\begin{array}{l}c=1 \\ n_{0}=1\end{array}\right.$

Is n^{2} in $\mathbf{O}(2 n+5)$? Why or why not? \rightarrow NO

Is $4 n^{2}$ in $\Omega(n)$? Why or why not? -yes

Is $4 n^{2}$ in $\Omega\left(n^{3}\right)$? Why or why not? $\rightarrow N_{0}$
Regardless of the value of c, there will alwayp come a paint when n^{3} becomes greater than or equal to

Is $n \log n$ in $\Theta\left(n^{2}\right)$? Why or why not?

Question 7

- base case conditional: -2, base case result: -1, plus to combine results in recursive step: -2 , use of eq? : -1 , recursive call: -3, correct use of car/cdr: -1, other errors: -1
(define (count-matches lst1 lst2)
(if (hull? Is +1)if (hull? $1 s+2$)
(if $($ eq? $($ oar 1 st 1$)($ cor $\mid s t 2))$
$(+1($ count-matches $($ cdr $\mid s+1)(c d r(s+2)))$
(count-matches $(\mathrm{cdr} \mid \mathrm{s} 41)(\mathrm{cor} \mid \mathrm{st}+2))$

Question 7

- Another writeup:
(define (count-matches lst1 lst2) (if (or (null? lst1) (null? lst2))

0
(+ (compare (car 1st1) (car 1st2)) (countmatches (cdr 1st1) (cdr lst2)))
)
)
(define (compare ab)

$$
\text { (if (eq? a b) } 1 \text { 0) }
$$

Question 8

- base case conditional: -2, base case result: -1 , use of pick-better or similar: -1, count-matches: -2, recursive call: -2 , describe code without writing it: up to -3 , did not "go both ways": -1

8 (continued). Define your find-best-alignment procedure here:
(define (find-best-alignment-helper msg1 msg2)
(if (or (null? msg1) (null? msg2))
0
(pick-better
(count-matches msg1 msg2)
(find-best-alignment-helper (cdr msg1) msg2)>)))
(define (find-best-alignment msgl msg2)
(pick-better
(find-best-alignment-helper msg1 msg2)
(find-best-alignment-helper msg2 msg1) >).)

Question 8
8 (continued). Define your find-best-alignment procedure here:
(define (find-best-alignment msg1 msg2)
Cbegin
Ldefine (host-align msgl nisg2)
Lif (null? msga)
(max (count matches msgl msg2)
(best-align migl (cdr m, \&g 2))
(max (hest-align miggl mugz 2$)$ (hest-align msg2 mogy1))

Question 9

- Right answer: -5 , right explanation: -5
my align procedure runs in $\theta(1)$ Which doesh't really affect the find-best-alignment According to the text Running time is based on the number of steps an the number of recursive applications.
Based on the code that I wrote, I woulds an th at the running time is in $\theta\left(n^{2}\right)$ because, there is a a recursive call that passes in the procedure count-matches. Count-matches deals with lists which puts it in $\theta(n)$
$\theta(n)<$ from the count-matches procedure $x \theta(n)$ from the recursion $=\theta\left(n^{2}\right)$

