

Is this enough? Can we define add with pred, succ, zero? and zero? add = λxy .if (zero? x) y	Can we define lambda terms that behave like zero, zero?, pred and succ ?
(add (pred <i>x</i>) (succ <i>y</i>))	Hint: what if we had cons , car and cdr ?
Numbers are Lists	Liberal Arts Trivia: Religious Studies
zero? = null?	 In Sunni Islam, the Five Pillars of
$pred \equiv cdr$	Islam are five duties incumbent
•	on Muslims. They include the
$succ \equiv \lambda x$. cons F x	Profession of Faith, Formal
The <i>length</i> of the list corresponds to the number value.	Prayers, and Giving Alms. Name the remaining two pillars.
#9	#10
Making Pairs	cons and car cons = $\lambda x. \lambda y. \lambda z. zxy$ Example: cons M N = $(\lambda x. \lambda y. \lambda z. zxy)$ M N
(define (<mark>make-pair</mark> x y)	$\rightarrow_{\beta}(\lambda y.\lambda z.zMy) N$
(lambda (selector) (if selector x y)))	$\rightarrow_{\beta} \lambda z. z MN \qquad \qquad \mathbf{T} \equiv \lambda x y. x$
(define (car-of-pair p) (p #t)) (define (cdr-of-pair p) (p #f))	$car \equiv \lambda p.p T$ Example: car (cons M N) = car ($\lambda z.zMN$) = ($\lambda p.p T$) ($\lambda z.zMN$) \rightarrow_{β} ($\lambda z.zMN$) T \rightarrow_{β} TMN
A pair is just an if statement that	$\rightarrow_{\beta} (\lambda x y. x) MN$
chooses between the car (then) and the cdr (else).	$\rightarrow_{\beta} (\lambda_{\mathcal{Y}}. M)N$
#11	$\rightarrow_{\beta} M$ #12

	1
$cdr too!$ $cons \equiv \lambda xyz.zxy$ $car \equiv \lambda p.p T$ $cdr \equiv \lambda p.p F$	Null and null? null = $\lambda x. T$ null ? = $\lambda x. (x \ \lambda y. \lambda z. F)$
Example: cdr (cons $M N$) cdr $\lambda z.zMN = (\lambda p.p F) \lambda z.zMN$ $\rightarrow_{\beta} (\lambda z.zMN) F$ $\rightarrow_{\beta} FMN$ $\rightarrow_{\beta} N$	Example: null? null $\rightarrow \lambda x.(x \lambda y.\lambda z.F) (\lambda x.T)$ $\rightarrow_{\beta} (\lambda x.T)(\lambda y.\lambda z.F)$ $\rightarrow_{\beta} T$
Null and null?	Counting
null = $\lambda x. T$ null? = $\lambda x. (x \ \lambda y. \lambda z. F)$ Example: null? (cons M N) $\rightarrow \lambda x. (x \ \lambda y. \lambda z. F) \ \lambda z. zMN$ $\rightarrow_{\beta} (\lambda z. z \ MN) (\lambda y. \lambda z. F)$ $\rightarrow_{\beta} (\lambda y. \lambda z. F) \ MN$ $\rightarrow_{\beta} F$	$0 \equiv \text{null}$ $1 \equiv \text{cons F } 0$ $2 \equiv \text{cons F } 1$ $3 \equiv \text{cons F } 2$ succ = $\lambda x. \text{cons F } x$ pred = $\lambda x. \text{cdr } x$ #16
42 = $\lambda xy.(\lambda z.z xy) \lambda xy. y \lambda xy.(\lambda z.z xy) \lambda xy. y$ $\lambda xy.(\lambda z.z xy) \lambda xy. y \lambda xy.(\lambda z.z xy) \lambda xy$	Lambda Calculus is a Universal Computer z z z z z z z z z z z z z z z z z z z
#17	#18

$\begin{array}{c} z \ z \ z \ z \ z \ z \ z \ z \ z \ z \$	Liberal Arts Trivia: Biology, Chemistry • While rendered fat obtained form pigs is known as lard, rendered beef or mutton fat is known as <i>this</i> . It is used to make animal feed and soap. Historically, it was used to make candles: it provided a cheaper alternative to wax. Before switching to vegetable oil in 1990, McDonald's cooked fries in 93% <i>this</i> and 7% cottonseed oil.
 Universal Computer Lambda Calculus can simulate a Turing Machine Everything a Turing Machine can compute, Lambda Calculus can compute also Turing Machine can simulate Lambda Calculus (we didn't prove this) Everything Lambda Calculus can compute, a Turing Machine can compute also Church-Turing Thesis: this is true for any other mechanical computer also 	What about "non-mechanical" computers?
<text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text>	 #22 Quantum Computing Feynman, 1982 Quantum particles are in all possible states Can try lots of possible computations at once with the same particles In theory, can test all possible factorizations/keys/paths/etc. and get the right one! In practice, very hard to keep states entangled: once disturbed, must be in just one possible state

 Quantum Computers Today Several quantum algorithms Shor's algorithm: factoring using a quantum computer Actual quantum computers 5-qubit computer built by IBM (2001) Implemented Shor's algorithm to factor: "World's most complex quantum computation" 15 (= 5 * 3) D-Wave 16-qubit quantum computer (2007) Solves Sudoku puzzles To exceed practical normal computing need > 50 qubits Adding another qubit is more than twice as hard
Two Ways of Thinking about
Nondeterminstic Computing
 Omniscient (all-knowing): machine always guesses right (the right guess is the one that eventually leads to a halting state) Omnipotent (all-powerful): machine can split in two every step, all resulting machines execute on each step, if one of the machines halts its tape is the output
#28
Liberal Arts Trivia: Geography
• This second-longest river in the United States flows form Lake Itasca in Minnesota to the Gulf of Mexico. Forty percent of North America's ducks, geese, swan and wading bird species use it as a migration corridor. It serves as the shared border for ten states, contains over 29 locks and dams, and generates more than a billion dollars a year in revenue from recreational uses, including over 600 water- oriented sites.

Computability	Speed
ls a nondeterministic TM more powerful than a deterministic TM?	Is a nondeterministic TM faster than a deterministic TM?
No! We can simulate a nondeterminstic TM with a regular TM.	
#31	#32
Speed	Pegboard Problem
Is a nondeterministic TM faster than a deterministic TM?	JUMP EF AND EF AND UT SING ST LEAVE ONLINE YOU - SENUS LUX TWO AD YOU'RE HATY SING LEAVE ONLINE YOU - SENUS LEAVE ONLINE HATY SING LEAVE SANGULAR STRATEGY SINGULAR STRATEGY SINGULAR STRATEGY LEAVE SANGULAR STRATEGY SINGULAR STRATEGY SINGULAR STRATEGY SINGULAR STRATEGY SINGULAR STRATEGY SINGULAR STRATEGY SINGULAR STRATEGY SINGULAR S
Unknown! This is the most famous open problem in CS.	LEA 1 OR N UTRE JI N OOSE" UM STOR RACKER JARREL OLD COUNT. IN STOR
#33	#34
Pegboard Problem	• To know a <i>O</i> (<i>f</i>) bound for a problem, we
 Input: a configuration of n pegs on a cracker barrel style pegboard Output: if there is a sequence of jumps 	need to find a $\Theta(f)$ procedure that solves it - The sorting problem is $O(n \log n)$ since we know a procedure that solves it in $\Theta(n \log n)$
that leaves a single peg, output that sequence of jumps. Otherwise, output false.	• To know a $\Omega(f)$ bound for a problem , we need to prove that there is no procedure faster than $\Theta(f)$ that solves it
How hard is the Pegboard Problem?	- We proved sorting is $\Omega(n \log n)$ by reasoning about the number of decisions needed
#35	#36

How much work is the Pegboard Problem? • Upper bound: (<i>O</i>) <i>O</i> (<i>n</i> !) Try all possible permutations • Lower bound: (Ω) <i>Ω</i> (<i>n</i>) Must at least look at every peg • Tight bound: (Θ) - What do you think?	 How much work is the pegboard Problem? Upper bound: (<i>O</i>) <i>O</i>(<i>n</i>!) Try all possible permutations Lower bound: (Ω) <i>Q</i>(<i>n</i>) Must at least look at every peg Tight bound: (Θ) No one knows!
Complexity Class P "Tractable"	Liberal Arts Trivia: Astronomy
Class P: problems that can be solved in a polynomial ($O(n^k)$ for some constant k) number of steps by a deterministic TM. Easy problems like sorting, making a photomosaic using duplicate tiles, and simulating the universe are all in P.	• This space telescope was launched into orbit by the Space Shuttle Discovery in 1990. After having its incorrectly-ground main mirror replaced in 1993, it has helped to make breakthroughs in astrophysics. Notable are its Ultra Deep Field image, which details the universe's most distant objects, and its help in determining the ultimate expansion of the universe (the eponymous constant).
#39	#40
Complexity Class NP	NP Problems
Class NP: Problems that can be solved in a polynomial number of steps by a nondeterministic TM. Omnipotent: If we could try all possible solutions at once, we could identify the solution in polynomial time. Omniscient: If we had a magic guess-correctly procedure that makes every decision correctly, we could devise a procedure that solves the problem in polynomial time.	 Can be solved by just trying all possible answers until we find one that is right Easy to quickly check if an answer is right Checking an answer is in P The pegboard problem is in NP We can easily try ~n! different answers We can check if a guess is correct in O(n) (check all n jumps are legal)
#41	#42

<image/> <image/> <image/>	CS 150 • Language: Formal Systems, Rules of Eval • Recursive Definitions • Programming with Lists • Programming with Mutation and Objects • Interpreters, Lazy Eval, Type Checking • Programming for the Internet • Measuring Complexity • Computability • Models of Computation
Homework • PS 9 Presentation Requests due Today • Wednesday April 29 th - Presentations in Lab - Extra Credit on PS9 for attending • Monday May 4 th - PS9 Report Due • Monday May 4 th - Final Exam <i>Optionally</i> Due #59	Liberal Arts Trivia: Bias • Weimer recommends that you take classes on philosophy until you've covered epistemology, free will, logic, the philosophy of science, and "what it is like to be a bat". Take cognitive psychology classes until you've covered perception and the Flynn effect. Take speech or rhetoric classes until you've covered persuasion. Take anthropology as well as gender studies classes until you've covered Mead and Freeman and you have a better feel for which behaviors are socially constructed and which may be essential. Take classes in statistics until you've covered the relationship between unhappiness and unrealized desires. Take classes in physics until you can explain how a microphone, radio and speaker all work. Take classes on government until you have an opinion about the feasibility of legislating morality. Take classes on history until you are not condemned to repeat the mistakes of the past.