<section-header></section-header>	 Once-Slide Summary The lambda calculus is a universal, fundamental model of computation. You can view it as "the essence of Scheme". It contains terms and rules describing variables, function abstraction, and function application. There are two key reduction rules in the lambda calculus. Alpha reduction allows you to rename variables uniformly. Beta reduction is the essence of computation: in beta reduction, a function evaluation is equivalent to replacing all instances of the formal parameter in the function body with the actual argument. It is possible to encode programming concepts, such as true, false, if, numbers, plus, etc., in the lambda calculus.
<pre></pre>	What is Calculus?• In High School: $d/dx x^n = nx^{n-1}$ $d/dx (f + g) = d/dx f + d/dx g$ [Sum Rule]Calculus is a branch of mathematics that deals with limits and the differentiation and integration of functions of one or more variables
 A calculus is just a bunch of rules for manipulating symbols. Latin word calx meaning pebble People can give meaning to those symbols, but that's not part of the calculus. Differential calculus is a bunch of rules for manipulating symbols. There is an interpretation of those symbols corresponds with physics, slopes, etc. 	 Lambda Calculus Rules for manipulating strings of symbols in the language: term = variable term term \u03c6 variable.term Humans can give meaning to those symbols in a way that corresponds to computations.

<section-header><list-item><list-item></list-item></list-item></section-header>	Evaluation Rules α -reduction (renaming) $\lambda y. M \Rightarrow_{\alpha} \lambda v. (M [each y replaced by v])$ where v does not occur in M. β -reduction (substitution) $(\lambda x. M)N \Rightarrow_{\beta} M [each x replaced by N]$ We'll see examples in a bit!
Equivalent Computers? z <t< td=""><td>Liberal Arts Trivia: Music • This music genre originated in Jamaica in the 1950s and was the precursor to reggae. It combines elements of Caribbean mento and calypso with American jazz and rhythm and blues. It is characterized by a walking abss line accented with rhythms on the offbeat. In the 1980s it experience a third wave revival and is often associated with punk and brass instruments.</td></t<>	Liberal Arts Trivia: Music • This music genre originated in Jamaica in the 1950s and was the precursor to reggae. It combines elements of Caribbean mento and calypso with American jazz and rhythm and blues. It is characterized by a walking abss line accented with rhythms on the offbeat. In the 1980s it experience a third wave revival and is often associated with punk and brass instruments.
Liberal Arts Trivia: Geography • This baltic country borders Romania, Serbia, Macedonia, Greece, Turkey and the Black Sea. It was at one point ruled by the Ottomans, but is now a member of the EU and NATO. Sofia, the capital and largest city, is one of the oldest cities in Europe and can be traced back some 7000 years. The traditional cuisine of this country features rich salads at every meal, as well as native pastries such as the <i>banitsa</i> .	Lambda Examples • Identity Function - (define identity (lambda (x) x)) - identity = λ x. x • Square Function - (define square (lambda (x) (* x x)) - square = λ x. (* x x) • Add Function - (define (add x y) (+ x y)) - (define add (lambda (x) (lambda (y) (+ x y)))) - add = λ x. λ y. (+ x y)

$\beta\text{-Reduction}$ (the source of all computation) $(\lambda x. M)N \Rightarrow_{\beta} M [x \rightarrow N]$ Replace all x's in M with N's Note the syntax is different from Scheme: $(\lambda x.M)N === ((\text{lambda}(x) \text{ M}) \text{ N})$	$\begin{array}{l} \beta \text{-Reduction Examples} \\ \bullet \text{ Square Function } & \text{Recall: } (\lambda x. M)N \Rightarrow_{\beta} M [x \rightarrow N] \\ & - \text{ square } = \lambda x. \ (* x x) \\ & - (\lambda x. \ (* x x)) 5 \\ & - (\lambda x. \ (* x x)) 5 \Rightarrow_{\beta} (* x x) [x \rightarrow 5] \\ & - (\lambda x. \ (* x x)) 5 \Rightarrow_{\beta} (* x x) [x \rightarrow 5] \Rightarrow_{\beta} (* 5 5) \\ \bullet \text{ Add Function } \\ & - \text{ add } = \lambda x. \ \lambda y. \ (+ x y) \\ & - (\lambda x. \ \lambda y. \ (+ x y)) 3 \Rightarrow_{\beta} ??? & \text{Get out some paper!} \\ & - ((\lambda x. \ \lambda y. \ (+ x y)) 2) 6 \Rightarrow_{\beta} ??? \end{array}$
$\begin{array}{l} \beta\text{-Reduction Examples} \\ \bullet \text{ Square Function } & \text{Recall: } (\lambda x. M)N \Rightarrow_{\beta} M[x \rightarrow N] \\ & - \text{ square } = \lambda x. \ (* \times x) \\ & - (\lambda x. \ (* \times x)) 5 \\ & - (\lambda x. \ (* \times x)) 5 \Rightarrow_{\beta} (* \times x)[x \rightarrow 5] \\ & - (\lambda x. \ (* \times x)) 5 \Rightarrow_{\beta} (* \times x)[x \rightarrow 5] \Rightarrow_{\beta} (* 5 5) \\ \bullet \text{ Add Function } \\ & - \text{ add } = \lambda x. \ \lambda y. \ (+ x y) \\ & - (\lambda x. \ \lambda y. \ (+ x y)) 3 \Rightarrow_{\beta} \lambda y. \ (+ 3 y) \\ & - ((\lambda x. \ \lambda y. \ (+ x y)) 2) 6 \Rightarrow_{\beta} (\lambda y. \ (+ 2 y)) 6 \Rightarrow_{\beta} (+ 2 6) \end{array}$	 Evaluating Lambda Expressions redex: Term of the form (λx. M)N Something that can be β-reduced An expression is in normal form if it contains no redexes (redices). To evaluate a lambda expression, keep doing reductions until you get to normal form.
Some Simple Functions $I \equiv \lambda x.x$ $C \equiv \lambda xy.yx$ Abbreviation for $\lambda x.(\lambda y. yx)$ $CII = (\lambda x.(\lambda y. yx)) (\lambda x.x) (\lambda x.x)$ $\rightarrow_{\beta} (\lambda y. y (\lambda x.x)) (\lambda x.x)$	Example $\lambda f. ((\lambda x.f(xx)) (\lambda x.f(xx)))$

Possible Answer $(\lambda f. ((\lambda x.f(xx)) (\lambda x. f(xx)))) (\lambda z.z)$ $\rightarrow_{\beta} (\lambda x. (\lambda z.z)(xx)) (\lambda x. (\lambda z.z)(xx))$ $\rightarrow_{\beta} (\lambda z.z) (\lambda x. (\lambda z.z)(xx)) (\lambda x. (\lambda z.z)(xx))$ $\rightarrow_{\beta} (\lambda x. (\lambda z.z)(xx)) (\lambda x. (\lambda z.z)(xx))$ $\rightarrow_{\beta} (\lambda z.z) (\lambda x. (\lambda z.z)(xx)) (\lambda x. (\lambda z.z)(xx))$	Alternate Answer $(\lambda f. ((\lambda x.f(xx)) (\lambda x. f(xx)))) (\lambda z.z)$ $\rightarrow_{\beta} (\lambda x. (\lambda z.z)(xx)) (\lambda x. (\lambda z.z)(xx))$ $\rightarrow_{\beta} (\lambda x.xx) (\lambda x. (\lambda z.z)(xx))$ $\rightarrow_{\beta} (\lambda x.xx) (\lambda x.xx)$ $\rightarrow_{\beta} (\lambda x.xx) (\lambda x.xx)$
$ \rightarrow_{\beta} (\lambda x.(\lambda z.z)(xx)) (\lambda x.(\lambda z.z)(xx)) \rightarrow_{\beta} $	\rightarrow_{β}
 Be Very Afraid! Some λ-calculus terms can be β-reduced forever! The order in which you choose to do the reductions might change the result! 	Liberal Arts Trivia: Classics • The Temple of Artemis at Ephesus, the Statue of Zeus at Olympus, and the Mausoleum of Maussollos are three of the Seven Wonders of the Ancient World. Name the other four.
 Liberal Arts Trivia: British Lit This 1883 coming-of-age tale of "pirates and buried gold" by Robert Louis Stevenson had a vast influence on the popular perception of pirates. Its legacies include treasure maps with an "X", the Black Spot, tropical islands, and one-legged seamen with parrots on their shoulders. Name the book. Name the morally gray, parrot-holding mutineer. 	 Take on Faith (until Grad PL) All ways of choosing reductions that reduce a lambda expression to normal form will produce the same normal form (but some might never produce a normal form). If we always apply the outermost lambda first, we will find the normal form if there is one. This is normal order reduction - corresponds to normal order (lazy) evaluation

 Universal Language Is Lambda Calculus a universal language? Can we compute any computable algorithm using Lambda Calculus? To prove it is not: Find some Turing Machine that cannot be simulated with Lambda Calculus To prove it is: Show you can simulate every Turing Machine using Lambda Calculus 	 Universal Language Is Lambda Calculus a <i>universal language</i>? Can we compute any computable algorithm using Lambda Calculus? To prove it is not: Find <i>some</i> Turing Machine that <i>cannot</i> be simulated with Lambda Calculus To prove it is: Show you can simulate <i>every</i> Turing Machine using Lambda Calculus
 Simulating Every Turing Machine A Universal Turing Machine can simulate every Turing Machine So, to show Lambda Calculus can simulate every Turing Machine, all we need to do is show it can simulate a Universal Turing Machine! 	Simulating Computation z z z z z z z z z z z z z z z z z z z
z z	Making "Primitives" from Only Glue (λ)

In search of the truth? • What does true mean? • True is something that when used as the first operand of if, makes the value of the if the value of its second operand: if T $M N \rightarrow M$	Don't search for T, search for if $\mathbf{T} \equiv \lambda x \ (\lambda y. x)$ $\equiv \lambda x y. x$ $\mathbf{F} \equiv \lambda x \ (\lambda y. y)$ $\mathbf{if} \equiv \lambda pca . pca$
	$\mathbf{m} = \mathcal{M} \mathcal{P} \mathcal{C} \mathbf{u} \cdot \mathcal{P} \mathcal{C} \mathbf{u}$
The Truth Is Out There $T \equiv \lambda x . (\lambda y. x)$ $F \equiv \lambda x . (\lambda y. y)$	Finding the Truth $T \equiv \lambda x . (\lambda y. x)$ $F \equiv \lambda x . (\lambda y. y)$
$if \equiv \lambda p . (\lambda c . (\lambda a . pca)))$ $if T M N$	$\mathbf{if} \equiv \lambda p . (\lambda c . (\lambda a . pca)))$ $\mathbf{if} \mathbf{T} \mathbf{M} \mathbf{N}$
$((\lambda pca . pca) (\lambda xy. x)) M N$ $\rightarrow_{\beta} ???$	$((\lambda pca . pca) (\lambda xy. x)) M N$ $\rightarrow_{\beta} (\lambda ca . (\lambda x. (\lambda y. x)) ca)) M N$ $\rightarrow_{\beta} \rightarrow_{\beta} (\lambda x. (\lambda y. x)) M N$ $\rightarrow_{\beta} (\lambda y. M)) N \rightarrow_{\beta} M$
and and or?	Lambda Calculus is a Universal Computer?
and $\equiv \lambda x (\lambda y. \text{ if } x y \text{ F}))$ or $\equiv \lambda x (\lambda y. \text{ if } x \text{ T} y))$	z z z z z z z z z z z z z z z z z z z

Homework

#37

• PS 9 Presentation Requests due Mon Apr 27