
A Universal ComputerA Universal Computer

#2

One-Slide Summary
• The Turing machine is a fundamental model of

computation. It models input, output, processing and
memory. A Turing machine has a finite state machine
controller as well as an infinite tape. At each step it
reads the current tape symbol, writes a new tape
symbol, moves the tape head left or right one square,
and moves to a new state in the finite state machine
controller. Turing machines are universal: they are just
as powerful as Scheme, Python, C, or Java.

• The lambda calculus is also a universal, fundamental
model of computation. You can view it as “the essence
of Scheme”.

#3

Where Are We?

• Last Time: Passwords, Security, etc.

• PS9 Meetings

#4

Finite State Machine

• There are lots of things we can’t
compute with only a finite number of
states

• Solutions:
– Infinite State Machine

•Hard to describe and draw

– Add an infinite tape to the Finite State
Machine
•We'll do this instead.

#5

Turing’s Explanation

“We have said that the
computable numbers are
those whose decimals are
calculable by finite
means. ... For the present
I shall only say that the
justification lies in the
fact that the human
memory is necessarily
limited.”

#6

FSM + Infinite Tape
• Start:

– FSM in Start State
– Input on Infinite Tape
– Pointer (= read/write head) to start of input

• Step (4 sub-steps each time):
– Read one input symbol from tape
– Write symbol on tape, and move L or R one square
– Follow transition rule from current state

• Finish:
– Transition to halt state

#7

Turing Machine Hardware

• Infinite (“as much as you want”) Paper Tape
– can read from and write to
– but only finite time ...

• Finite Brain (set of rules)
– modeling “Computers” (People)

#8

Turing Machine

1

Start

2

Input: #
Write: #
Move: ←

1 0 1 1 0 1 1... ...1 0 1 1 0 1 1 1

Input: 1
Write: 0
Move: ←

Input: 1
Write: 1
Move: →

Input: 0
Write: 0
Move: → 3

Input: 0
Write: #
Move: ←

Why is
this machine
not complete?

#9

Matching Parentheses
• Find the leftmost)

– If you don’t find one, the parentheses match,
write a 1 at the tape head and halt.

• Replace it with an X
• Look left for the first (

– If you find it, replace it with an X (they
matched)

– If you don’t find it, the parentheses didn’t
match – end write a 0 at the tape head and halt

#10

Matching Parentheses

1:
look
for)

Start

HALT

), X, L

2: look
for (

X, X, R

X, X, L

(, X, R

#, 0, ##, 1, #

(, (, R

#11

Matching Parentheses

1:
look
for)

Start

HALT

), X, L

2: look
for (

X, X, R

X, X, L

(, X, R
#, 0, ##, 1, #

(, (, R

Will this report the
correct result for (()?

#12

Matching Parentheses

1Start

HALT

), X, L

2: look
for (

(, (, R

(, X, R

#, 0, ##, 1, #

X, X, L

X, X, R

#, #, L

3: look
for (X, X, L

#, 1, #

(, 0, #

#13

Turing Machine
z z z z z z z z z z z z z z z zzzz z z z

TuringMachine ::= < Alphabet, Tape, FSM >
Alphabet ::= { Symbol* }
Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [Square*]
RightSide ::= [Square*]

Everything to left of LeftSide is #.
Everything to right of RightSide is #.

1

Start

HAL
T

), X, L

2:
look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

How well does this model your computer?

Infinite Tape

#14

Turing Machine: FSM + Infinite Tape
• Start:

– FSM in Start State
– Input on Infinite Tape
– Tape head at start of input

• Step (4 sub-steps):
– Read current input symbol from tape
– Follow transition rule from current state on input

• Write symbol on tape
• Move L or R one square
• Update FSM state

• Finish: Transition to halt state

#15

Liberal Arts Trivia: Politics

• This military alliance, established by the North
Atlantic Treaty in 1949, provides for a system
of collective defense whereby its member
states agree to help each other in response to
an attack by an external party. An infamous
initial goal was “to keep the Russians out, the
Americans in, and the Germans down.” The
combined military spending of its members
accounts for over 70% of the world's total
defense spending.

#16

Liberal Arts Trivia: Chemistry

• Diacetylmorphine was first synthesized in 1874. It
was later commercialized by (the company that
would become) Bayer in a failed effort to produce
codeine. From 1898 to 1910 it was marketed as a
non-addictive morphine substitute and cough
suppressant, and as a cure for morphine
addiction. It was quickly discovered that it rapidly
metabolized into morphine, and, as such, was
essentially just a quicker form of morphine. Give
today's name for this drug, which made field
subjects feel heroic.

#17

A function)(wf

Domain

Result Region

has:

D Dw∈

S Swf ∈)(

#18

Integer Domain:

Unary:

Binary:

Decimal:

11111

101

5

We prefer Unary representation:

Easier to manipulate

#19

A function may have many parameters:

yxyxf +=),(

Example:

Addition function

yx, are integers

#20

Definition:

A function is computable if
there is a Turing Machine such that:

f
M

Initial Configuration Final configuration

Dw∈ Domain

◊

0q

◊w ◊

fq

◊)(wf

final state

#21

Example

The function yxyxf +=),(is computable

Turing Machine:

Input string: yx0 unary

Output string: 0xy unary

yx, are integers

#22

◊ 0

0q

1 1 ◊1 1

x y

1

◊ 0

fq

1 ◊1

yx +

 11

Start

Finish

final state

#23

0q

Turing machine for function

1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

yxyxf +=),(

#24

Execution Example:

11=x

11=y

◊ 0

0q

1 1 ◊1 1

Time 0
x y

Final Result

◊ 0

4q

1 1 ◊1 1

yx +

(2)

(2)

#25

◊ 0

0q

1 1
Time 0

◊

0q

Time 1
◊ ◊

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

1 1 01 11 1

#26

Time 2 Time 3

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

◊ 0

0q

1 1 ◊

1q

◊ ◊1 1 1 11 11

#27

Time 4 Time 5

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

◊

1q

1 1 ◊

1q

◊ ◊1 1 1 11 111

#28

Time 6 Time 7

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

◊

2q

1 1 ◊

3q

◊ ◊1 1 1 11 011

#29

Time 8 Time 9

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

◊

3q

1 1 ◊

3q

◊ ◊1 0 1 11 011

#30

Time 10 Time 11

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

◊

3q

1 1 ◊

3q

◊ ◊1 0 1 11 011

#31

Time 12

0q 1q 2q 3qL,◊→◊ L,01→

L,11→

R,◊→◊

R,10 →

R,11→

4q

R,11→

◊

4q

1 1 ◊1 01

HALT & accept

#32

Liberal Arts Trivia: American Lit

• This early-20th-century American author
invited and wrote about cosmic horror, the
idea that life is incomprehensible to human
minds and that the universe is fundamentally
alien. Thus, those who genuinely reason
gamble with insanity. He was little read during
life but is now regarded with Edgar Allen Poe
as one of the most influential horror writers of
the 20th century.

#33

Liberal Arts Trivia: Taoism

• Name the group of legendary,
undying xian from Chinese
mythology. Each member's
power can be transferred to a
tool that can give life or
destroy evil. They are revered
by Taoists, and include Royal
Uncle Cao, Iron Crutch Li, Elder
Zhang Guo, and Lu Tung-Pin.
Many of them were said to
practice neidan, or internal
alchemy.

#34

Turing Machine
z z z z z z z z z z z z z z z zz z z z

TuringMachine ::= < Alphabet, Tape, FSM >
Alphabet ::= { Symbol* }
Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [Square*]
RightSide ::= [Square*]

Everything to left of LeftSide is #.
Everything to right of RightSide is #.

1

Start

HAL
T

), X, L

2:
look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

#35

Describing Finite State Machines

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
States ::= { StateName* }
InitialState ::= StateName must be element of States
HaltingStates ::= { StateName* } all must be elements of States
TransitionRules ::= { TransitionRule* }
TransitionRule ::=
 < StateName, ;; Current State
 OneSquare, ;; Current square
 StateName, ;; Next State
 OneSquare, ;; Write on tape
 Direction > ;; Move tape
Direction ::= L, R, #

Transition Rule is a procedure:
Inputs: StateName, OneSquare
Outputs: StateName, OneSquare,

 Direction

#36

Enumerating Turing Machines

• Now that we’ve decided how to describe
Turing Machines, we can number them

• TM-5023582376 = balancing parens
• TM-57239683 = even number of 1s
• TM-3523796834721038296738259873 = Photomosaic Program
• TM-3672349872381692309875823987609823712347823 = WindowsXP

#37

Enumerating Turing Machines

• Now that we’ve decided how to describe
Turing Machines, we can number them

• TM-5023582376 = balancing parens
• TM-57239683 = even number of 1s
• TM-3523796834721038296738259873 = Photomosaic Program
• TM-3672349872381692309875823987609823712347823 = WindowsXP

Not the real
numbers – they
would be much

bigger!

#38

Universal Turing Machine

Universal
Turing

Machine

P
Number
of TM

I
Input
Tape
also, just a number!

Output
Tape
for running
TM-P
in tape I

Can we make a Universal Turing Machine?

#39

Yes!
• People have designed Universal Turing

Machines with
– 4 symbols, 7 states (Marvin Minsky)
– 4 symbols, 5 states
– 2 symbols, 22 states
– 18 symbols, 2 states
– 2 states, 5 symbols (Stephen Wolfram)

• No one knows what the smallest possible
UTM is

#40

Manchester Illuminated Universal Turing Machine, #9
from http://www.verostko.com/manchester/manchester.html

#41

Church-Turing Thesis
• Any mechanical computation can be

performed by a Turing Machine
• There is a TM-n corresponding to every

computable problem
• We can any “normal” (classical mechanics)

computer with a TM
– If a problem is in polynomial time on a TM, it is

in polynomial time on an iMac, Cray, Palm, etc.
– But maybe not a quantum computer! (later

class)

#42

Universal Language

• Is Scheme/Charme/Python as powerful as
a Universal Turing Machine?

• Is a Universal Turing Machine as powerful
as Scheme/Charme/Python?

#43

Universal Language

• Is Scheme/Charme/Python as powerful as
a Universal Turing Machine?

• Is a Universal Turing Machine as powerful
as Scheme/Charme/Python?

Yes: show we can simulate a UTM with a Scheme program

Can we simulate a Scheme interpreter with a TM?

#44

Complexity in Scheme
• Special Forms

– if, cond, define, etc.

• Primitives
– Numbers (infinitely many)
– Booleans: #t, #f
– Functions (+, -, and, or, etc.)

• Evaluation Complexity
– Environments (more than ½ of our eval code)

Can we get rid of all this and still have a useful language?

If we have lazy evaluation and
don’t care about abstraction,
we don’t need these.

Hard to get rid of?

#45

λ-calculus
Alonzo Church, 1940

(LISP was developed from λ-calculus,
not the other way round.)

term = variable
 | term term
 | (term)

 | λ variable . term

#46

What is Calculus?

• In High School:
d/dx xn = nxn-1 [Power Rule]
d/dx (f + g) = d/dx f + d/dx g [Sum Rule]

Calculus is a branch of mathematics that
deals with limits and the differentiation
and integration of functions of one or
more variables...

#47

Real Definition
• A calculus is just a bunch of rules for

manipulating symbols.
– Latin word calx meaning pebble ...

• People can give meaning to those
symbols, but that’s not part of the
calculus.

• Differential calculus is a bunch of rules
for manipulating symbols. There is an
interpretation of those symbols
corresponds with physics, slopes, etc.

#48

Lambda Calculus

• Rules for manipulating strings of
symbols in the language:

 term = variable
 | term term
 | (term)

 | λ variable . term

• Humans can give meaning to those
symbols in a way that corresponds to
computations.

#49

Why?

• Once we have precise and formal rules for
manipulating symbols, we can use it to
reason with.

• Since we can interpret the symbols as
representing computations, we can use it
to reason about programs.

#50

Evaluation Rules

α-reduction (renaming)

 λy. M ⇒α λv. (M [each y replaced by v])

where v does not occur in M.

β-reduction (substitution)

 (λx. M)N ⇒ β M [each x replaced by N]

#51

Homework

• Exam 2 Due Today
• PS 9 Presentation Requests due Mon Apr 27

