

Turing Machine Infinite Tape z	 Turing Machine: FSM + Infinite Tape Start: FSM in Start State Input on Infinite Tape Tape head at start of input Step (4 sub-steps): Read current input symbol from tape Follow transition rule from current state on input Write symbol on tape Move L or R one square Update FSM state Finish: Transition to halt state
 Liberal Arts Trivia: Politics This military alliance, established by the North Atlantic Treaty in 1949, provides for a system of collective defense whereby its member states agree to help each other in response to an attack by an external party. An infamous initial goal was "to keep the Russians out, the Americans in, and the Germans down." The combined military spending of its members accounts for over 70% of the world's total defense spending. 	 Liberal Arts Trivia: Chemistry Diacetylmorphine was first synthesized in 1874. It was later commercialized by (the company that would become) Bayer in a failed effort to produce codeine. From 1898 to 1910 it was marketed as a non-addictive morphine substitute and cough suppressant, and as a cure for morphine addiction. It was quickly discovered that it rapidly metabolized into morphine, and, as such, was essentially just a quicker form of morphine. Give today's name for this drug, which made field subjects feel heroic.
A function $f(w)$ has:	Integer Domain: Unary: 11111
Domain D $w \in D$	Binary: 101
	Decimal: 5
Result Region S $f(w) \in S$	We prefer Unary representation:
#17	Easier to manipulate

<text><text><text><text><text><text></text></text></text></text></text></text>	 Special Forms if, cond, define, etc. Primitives Numbers (infinitely many) Booleans: #t, #f Functions (+, -, and, or, etc.) Evaluation Complexity Environments (more than ½ of our eval code)
$\begin{array}{l} \lambda \text{-calculus} \\ \text{Alonzo Church, 1940} \\ \text{(LISP was developed from } \lambda \text{-calculus, } \\ \text{not the other way round.}) \\ \textit{term} = variable \\ \textit{term term} \\ \textit{(term)} \\ \lambda \textit{ variable . term} \end{array}$	What is Calculus?• In High School: $d/dx x^n = nx^{n-1}$ $d/dx (f + g) = d/dx f + d/dx g$ [Sum Rule]Calculus is a branch of mathematics that deals with limits and the differentiation and integration of functions of one or more variables
 *** A calculus is just a bunch of rules for manipulating symbols. Latin word calx meaning pebble People can give meaning to those symbols, but that's not part of the calculus. Differential calculus is a bunch of rules for manipulating symbols. There is an interpretation of those symbols expression with physics, slopes, etc. 	 Rules for manipulating strings of symbols in the language: term = variable term term (term) variable.term Humans can give meaning to those symbols in a way that corresponds to computations.

Why?Evaluation Rules• Once we have precise and formal rules for manipulating symbols, we can use it to reason with. α -reduction (renaming) $\lambda y. M \Rightarrow_{\alpha} \lambda v. (M [each y replaced by v])where v does not occur in M.• Since we can interpret the symbols asrepresenting computations, we can use itto reason about programs.\beta-reduction (substitution)(\lambda x. M)N \Rightarrow_{\beta} M [each x replaced by N]******• Exam 2 Due Today• PS 9 Presentation Requests due Mon Apr 27$		
#0 Homework • Exam 2 Due Today • PS 9 Presentation Requests due Mon Apr 27	 Why? Once we have precise and formal rules for manipulating symbols, we can use it to reason with. Since we can interpret the symbols as representing computations, we can use it to reason about programs. 	Evaluation Rules α -reduction (renaming) $\lambda y. M \Rightarrow_{\alpha} \lambda v. (M [each y replaced by v])$ $\mu where v$ does not occur in M . β -reduction (substitution) $(\lambda x. M)N \Rightarrow_{\beta} M [each x replaced by N]$
Homework • Exam 2 Due Today • PS 9 Presentation Requests due Mon Apr 27	#49	#50
#51	Homework • Exam 2 Due Today • PS 9 Presentation Requests due Mon Apr 27	
	#51	