
Types of TypesTypes of Types

#2

One-Slide Summary
• In lazy evaluation, expressions are not

evaluated until their values are needed. We
can use lazy evaluation to program with
infinite data structures, such as a list of all
natural numbers.

• A type is a (possibly infinite) set of values.
• Each type supports a set of valid operations.
• Types can be latent or manifest, static or

dynamic, strong or weak.
• We can change the Charme interpreter to

support manifest (program visible) types.

#3

Outline

• Administration
• Lazy Evaluation Recap
• Quiz Results
• Types
• Type Taxonomy
• Static Charme

– Charme with Manifest Types

#4

Administrivia

• Start PS7 Now
• Kinga's Web Fault Research Survey

– http://www.cs.virginia.edu/~kld5r/webfault/

– Worth 2 points of Extra Credit on Exam 2
– Plus possibly $$$...

• 2009 Computing and Communication
Scholarship for Undergraduate Women
– http://www.cs.virginia.edu/ccscholarship

– $1000 merit scholarship, due June 30th

#5

The Textbook

• I get the sense that some of the students are
attempting to read the book on-line. I would
encourage everyone to read it on paper. It is
pretty well established that people read faster
and understand better on paper than on the
screen.
– David Evans, Course Book Author

#6

Problem Set 8

• Understand and modify a dynamic web
application

• Already posted
• Due Monday April 13th

• Team requests and ideas due Friday April
10th (email me before midnight)

Problem Set 9

#7

Lazy Evaluation Recap

• Don’t evaluate expressions until their value
is really needed
– We might save work this way, since sometimes

we don’t need the value of an expression
– We might change the meaning of some

expressions, since the order of evaluation
matters

• Change the Evaluation rule for Application
• Use thunks to delay evaluations

#8

Lazy Application

def evalApplication(expr, env):
 # make Thunk object for each operand expression
 ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
 return mapply(forceeval(expr[0], env), ops)

def evalApplication(expr, env):
 subexprvals = map (lambda sexpr: meval(sexpr, env), expr)
 return mapply(subexprvals[0], subexprvals[1:])

#9

Lazy Data Structures

(define cons
 (lambda (a b)
 (lambda (p)
 (if p a b))))

(define car
 (lambda (p) (p #t)))

(define cdr
 (lambda (p) (p #f)))

Note: for PS7, you
are defining these
as primitives,
which would not
evaluate lazily.

#10

Using Lazy Pairs

(define cons
 (lambda (a b)
 (lambda (p)
 (if p a b))))

LazyCharme> (define mypair (cons 3 error))
LazyCharme> mypair
<Procedure ['p'] / ['if', 'p', 'a', 'b']>
LazyCharme> (car mypair)
3
LazyCharme> (cdr mypair)
Error: Undefined name: error

(define car
 (lambda (p) (p #t)))
(define cdr
 (lambda (p) (p #f)))

#11

Infinite Lists

(define ints-from
 (lambda (n)
 (cons n (ints-from (+ n 1)))))

LazyCharme> (define allnaturals (ints-from 0))
LazyCharme> (car allnaturals)
0
LazyCharme> (car (cdr allnaturals))
1
LazyCharme> (car (cdr (cdr (cdr (cdr allnaturals)))))
4

#12

Infinite Fibonacci Sequence
(define fibo-gen (lambda (a b)
 (cons a (fibo-gen b (+ a b)))))

(define fibos (fibo-gen 0 1))

(define get-nth (lambda (lst n)
 (if (= n 0) (car lst)
 (get-nth (cdr lst) (- n 1)))))

(define fibo
 (lambda (n) (get-nth fibos n)))

#13

Alternate Implementation

(define merge-lists
 (lambda (lst1 lst2 proc)
 (if (null? lst1) null
 (if (null? lst2) null
 (cons (proc (car lst1) (car lst2))
 (merge-lists (cdr lst1) (cdr lst2) proc))))))

(define fiboms ;;; merge-list variant
 (cons 0
 (cons 1
 (merge-lists fiboms (cdr fiboms) +))))

Come back and
understand this slide

to study for the exams.

#14

Quiz Results

#15

Quiz Answers
• Programming languages designed by John

Backus: Fortran, FP, FL
(BNF – not a programming language)

2. What did Gödel prove?
That any axiomatic system powerful

enough to express “This statement
cannot be proven in the system” must
be incomplete.

3. What does SSS0 mean? 3

#16

class Environment:
 def __init__(self, parent):
 self._parent = parent
 self._frame = { }
 def addVariable(self, name, value):
 self._frame[name] = value
 def lookupVariable(self, name):
 if self._frame.has_key(name):
 return self._frame[name]

 elif self._parent:

 return self._parent.lookupVariable(name)
 else:
 evalError("Undefined name: %s" % (name))

Quiz 4: Environment Class

#17

Quiz 5: Viruses

• Is it possible to define a procedure that
protects computer users from all viruses?

Here’s one procedure:
o Unplug the computer from the power
o Encase it in concrete
o Throw it in the Potomac River

This is a very different question from the “Is it possible to
determine if a procedure specification is a virus?” question
(which we proved in class is impossible by showing how a
solution to it could be used to solve the Halting Problem).

#18

Liberal Arts Trivia:
Cognitive Science

• This philosophy of mind dominated for the first
half of the 20th century. It developed as a reaction
to the inadequacies of introspectionism. In it, all
things which organisms do – including acting,
thinking and feeling – should be regarded as
actions or reactions, usually to the environment.
It holds that there are no philosophical
differences between publicly observable
processes (actions) and privately observable
processes (thinking and feeling).

• Bonus: B.F. Who?

#19

Liberal Arts Trivia: Civil Rights

• The landmark 1967 Supreme Court
case Loving v. Virginia declared
Virginia's anti-miscegenation statue,
the “Racial Integrity Act of 1924”,
unconstitutional. This effectively
ended laws preventing what?

#20

Types

#21

Types
Numbers Strings

Beatle’s Songs that don’t end on the Tonic
Colors

lists of lists of lists of anything

programs that halt

• A Type is a (possibly infinite) set of values
• You can do some things with some types,

but not others
– Each Type has associated valid operations

#22

Why have types?
• Detecting programming errors: (usually)

better to notice error than report incorrect
result

• Make programs easier to read, understand
and maintain: thinking about types can help
understand code

• Verification: types make it easier to prove
properties about programs

• Security: can use types to constrain the
behavior of programs

#23

Types of Types

Does regular Scheme have types?

> (car 3)
car: expects argument of type <pair>; given 3
> (+ (cons 1 2))
+: expects argument of type <number>; given (1 . 2)

Yes, without types (car 3) would produce some silly result.
Because of types, it produces a type error.

#24

Type Taxonomy
• Latent vs. Manifest

– Are types visible in the program text?
• Static vs. dynamic checking

– Do you have to run the program to know if
it has type errors?

• Weak vs. Strong checking
– How strict are the rules for using types?

• (e.g., does the predicate for an if need to be a
Boolean?)

– Continuum (just matter of degree)

#25

Scheme/Python/Charme

• Latent or Manifest?
– All have latent types (none visible in code)

• Static or Dynamic?
– All are dynamic (checked when expression is

evaluated)

• Weak or Strong?
– Which is the strictest?
– You tell me!

#26

Strict Typing
Scheme> (+ 1 #t)
 +: expects type <number> as 2nd argument,

given: #t; other arguments were: 1
Python>>> 1 + True
2
Charme> (+ 1 #t)
2

#27

Scheme/Python/Charme
→ Java/StaticCharme

• Scheme, Python, and Charme have Latent,
Dynamically checked types
– Don’t see explicit types when you look at code
– Checked when an expression is evaluated

• Java, StaticCharme have Manifest, Statically
checked types
– Type declarations must be included in code
– Types are checked statically before running the

program (Java: not all types checked statically)

#28

Java Example

class Test {
 int tester (String s)
 {
 int x;
 x = s;
 return "okay";
 }
}

The result
is an integer

The place x
holds an integer

The parameter
must be a String

#29

Java Example

class Test {
 int tester (String s)
 {
 int x;
 x = s;
 return "okay";
 }
}

The result
is an integer

The place x
holds an integer

> javac types.java
types.java:5: Incompatible
type for =. Can't convert
java.lang.String to int.
 x = s;
 ^
types.java:6: Incompatible
type for return. Can't convert
java.lang.String to int.
 return "okay";
 ^
2 errors

The parameter
must be a String

javac compiles (and type checks)
the program. It does not execute it.

#30

What do we need to do to
change our Charme interpreter

to provide manifest types?

#31

Truthiness!

#32

Liberal Arts Trivia:
Media Studies

• This technique in film editing
combines a series of short shots into a
sequence of condensed narrative. It is
usually used to advance the story as a
whole and often to suggest the
passage of time.

#33

Liberal Arts Trivia:
United Kingdom History

• This United Kingdom Tory prime minister was
most famous for his military work during the
Peninsular Campaign and the Napoleonic Wars.
He was nicknamed the “Iron Duke” because of
the iron shutters he had fixed to his windows
to stop pro-reform mobs from breaking them –
as an MP he was opposed to reform. It is
unclear whether the well-known beef
tenderloin, pate and puff pastry dish is named
after him.

#34

Programming Language Design Space
E

xp
re

ss
iv

e
ne

ss

“Truthiness”

Scheme

Python

Charme

LazyCharme

StaticCharme

Java

C++

#35

Types of Types

Latent

Dynamically Checked

Manifest

Statically Checked

Charme StaticCharme

change grammar, represent types

typecheck expressions before eval

#36

Manifest Types

Need to change the grammar rules to
include types in definitions and parameter
lists

Definition ::= (define Name : Type Expression)
Parameters ::= ε | Parameter Parameters
Parameter ::= Name : Type

Type ::= ??

#37

Types in Charme

CType ::= CPrimitiveType
CType ::= CProcedureType
CType ::= CProductType

CPrimitiveType ::= Number | Boolean
CProcedureType ::= (CProductType -> Type)
CProductType ::= (CTypeList)
CTypeList ::= CType CTypeList
CTypeList ::=

#38

3
Number
+
((Number Number) -> Number)
(+ 3 3)
Number
(lambda (x:Number y:Number) (> x y))
((Number Number) -> Boolean)

Changed parameters grammar rule:
Parameter ::= Name : Type

CType ::= CPrimitiveType | CProcedureType | CProductType
CPrimitiveType ::= Number | Boolean
CProcedureType ::= (CProductType -> Type)
CProductType ::= (CTypeList)
CTypeList ::= CType CTypeList
CTypeList ::=

#39

Representing Types
CType ::= CPrimitiveType | CProcedureType | CProductType
CPrimitiveType ::= Number | Boolean
CProcedureType ::= (CProductType -> Type)
CProductType ::= (CTypeList)
CTypeList ::= CType CTypeList
CTypeList ::=

CType

CPrimitiveType

CProcedureType CProductType

CErrorType

superclass

subclasses

#40

class CType:
 @staticmethod
 def fromString(s):
 # create type from string
 tparse = parse(s)
 return CType.fromParsed(tparse[0])

 @staticmethod
 def fromParsed(typ):
 ... # create type from parsed type
 # These methods are overridden by subclasses
 def isPrimitiveType(self): return False
 def isProcedureType(self): return False
 def isProductType(self): return False
 def isError(self): return False

No self object

#41

CPrimitiveType

class CPrimitiveType(CType):
 def __init__(self, s):
 self._name = s
 def __str__(self):
 return self._name
 def isPrimitiveType(self):
 return True
 def matches(self, other):
 return other.isPrimitiveType() \
 and self._name == other._name ???

class X(Y):
means X is a subclass of Y

Get out paper!

#42

CPrimitiveType

class CPrimitiveType(CType):
 def __init__(self, s):
 self._name = s
 def __str__(self):
 return self._name
 def isPrimitiveType(self):
 return True
 def matches(self, other):
 return other.isPrimitiveType() \
 and self._name == other._name

class X(Y):
means X is a subclass of Y

#43

CProcedureType
class CProcedureType(CType):
 def __init__(self, args, rettype):
 self._args = args
 self._rettype = rettype
 def __str__(self):
 return "(" + str(self._args) + " -> " \
 + str(self._rettype) + ")"
 def isProcedureType(self): return True
 def getReturnType(self): return self._rettype
 def getParameters(self): return self._args
 def matches(self, other):
 return other.isProcedureType() \
 and self.getParameters().matches(other.getParameters()) \
 and self.getReturnType().matches(other.getReturnType()) ???

#44

CProcedureType
class CProcedureType(CType):
 def __init__(self, args, rettype):
 self._args = args
 self._rettype = rettype
 def __str__(self):
 return "(" + str(self._args) + " -> " \
 + str(self._rettype) + ")"
 def isProcedureType(self): return True
 def getReturnType(self): return self._rettype
 def getParameters(self): return self._args
 def matches(self, other):
 return other.isProcedureType() \
 and self.getParameters().matches(other.getParameters()) \
 and self.getReturnType().matches(other.getReturnType())

#45

CProductType
class CProductType(CType):
 def __init__(self, types): self._types = types
 def __str__(self): ...
 def isProductType(self): return True
 def matches(self, other):
 if other.isProductType():
 st = self._types
 ot = other._types
 if len(st) == len(ot):
 for i in range(0, len(st)):
 if not st[i].matches(ot[i]): return False
 # reached end of loop ==> all matched
 return True
 return False

???

#46

CProductType
class CProductType(CType):
 def __init__(self, types): self._types = types
 def __str__(self): ...
 def isProductType(self): return True
 def matches(self, other):
 if other.isProductType():
 st = self._types
 ot = other._types
 if len(st) == len(ot):
 for i in range(0, len(st)):
 if not st[i].matches(ot[i]): return False
 # reached end of loop ==> all matched
 return True
 return False

#47

Homework

• Show up to Gary McGraw guest lecture on
Monday

• Problem Set 7 due Monday
• Problem Set 9 Team Requests Friday Apr 10th

