
Objects Python InterpretersObjects Python Interpreters

#2

One-Slide Summary
• Object-Oriented Programming encapsulates state

and methods together into objects. This hides
implementation details (cf. inheritance) while
allowing methods to operate on many types of input.

• Learning new languages has pragmatic value,
expands our minds, deepens our understanding,
builds confidence, and may even be fun.

• Python is a universal, imperative, object-oriented
language.

• Building an interpreter is a fundamental idea in
computing. Eval and Apply are mutually recursive.

#3

Outline

• Object Lessons
• Why Python?
• Ali G
• Interpreters

#4

Exam 2 Extra Credit
• 2 points on Exam 2: attend talk Thursday

(tomorrow) in GILMER 190 from 3:30 to 4:30pm
• Scott Aaronson from MIT:

– In the popular imagination, quantum computers would be
almost magical devices, able to "solve impossible problems in an
instant" by trying exponentially many solutions in parallel. In
this talk, I'll describe various results in quantum computing
theory that directly challenge this view. For example, at least
in the "black-box model" that we know how to analyze,
quantum computers would need exponential time to break
cryptographic hash functions or find local optima, just as
classical computers would. As time permits, I'll also describe
how studying the limitations of quantum computers can lead to
new insights even into classical computation.

#5

Where is Gilmer 190?

• (17)
– upper
– left

• We are in
(27) now

#6

BACS Info Session

• Thursday (tomorrow) 5-6pm Olsson 236D
– Enter by the front steps: there will be signs up

• For students curious about the BA in CS
– The Minor
– The Major
– Distinguished Majors Program
– Required courses, etc.

• Can't make it but are interested?
– Email Tom Horton (horton@cs.virginia.edu)

#7

Components
in Sketchpad

Actual Sketchpad:

#8

Objects in Sketchpad
In the process of making the Sketchpad system operate, a few very
general functions were developed which make no reference at all to the
specific types of entities on which they operate. These general
functions give the Sketchpad system the ability to operate on a wide
range of problems. The motivation for making the functions as general
as possible came from the desire to get as much result as possible from
the programming effort involved. For example, the general function for
expanding instances makes it possible for Sketchpad to handle any fixed
geometry subpicture. The rewards that come from implementing
general functions are so great that the author has become reluctant to
write any programs for specific jobs.
 Each of the general functions implemented in the Sketchpad system
abstracts, in some sense, some common property of pictures
independent of the specific subject matter of the pictures themselves.

Ivan Sutherland, Sketchpad: a Man-Machine Graphical
Communication System, 1963 (major influence on Alan Kay

developing OOP in 1970s)

#9

Simula

•Considered the first “object-oriented”
programming language
•Language designed for simulation by
Kristen Nygaard and Ole-Johan Dahl
(Norway, 1962)
•Had special syntax for defining classes that
package state and procedures together

#10

Counter in Simula
class counter;
 integer count;
 begin
 procedure reset(); count := 0; end;
 procedure next();
 count := count + 1; end;
 integer procedure current();
 current := count; end;
 end

#11

XEROX Palo Alto Research Center (PARC)

• 1970s:
•Bitmapped display
•Graphical User Interface

• Steve Jobs paid $1M to visit PARC (bought their
stock), and returned to make Apple Lisa/Mac

•Ethernet
•First personal computer (Alto)
•PostScript Laser Printers
•Object-Oriented Programming

#12

“Don’t worry about what anybody else is going to do…
The best way to predict the future is to invent it.

Really smart people with reasonable funding can do
just about anything that doesn't violate

too many of Newton's Laws!”
— Alan Kay, 1971

Dynabook,
1972

(Just a model)

#13

Dynabook 1972
• Tablet computer
• Intended as tool for learning
• Kay wanted children to program it also
• Hallway argument, Kay claims you could
define “the most powerful language in the
world in a page of code”
• Proof: Smalltalk

• Scheme is as powerful, but takes two pages
• Before the end of CS 150, we will see an equally

powerful language that fits in ¼ page

#14

BYTE
Magazine,

August
1981

#15

Smalltalk

•Everything is an object
•Objects communicate by sending and
receiving messages
•Objects have their own state (which may
contain other objects)
•How do you do 3 + 4?

send the object 3 the message “+ 4”

#16

Counter in Smalltalk

class name counter
 instance variable names count
 new count <- 0
 next count <- count + 1
 current ^ count

#17

Counter in Python

class counter:
 def __init__(self): self._count = 0
 def reset(self): self._count = 0
 def next(self): self._count = self._count + 1
 def current(self): return self._count

counter() creates a new counter using the __init__ method
count is the instance variable (is just a naming convention)

#18

Who was the first
object-oriented
programmer?

#19

Ada, Countess of Lovelace, around
1843

First Object-Oriented Programmer?

By the word operation, we mean any process which alters the
mutual relation of two or more things, be this relation of what kind
it may. This is the most general definition, and would include all
subjects in the universe. Again, it might act upon other things
besides number, were objects found whose mutual fundamental
relations could be expressed by those of the abstract science of
operations, and which should be also susceptible of adaptations to
the action of the operating notation and mechanism of the engine...
Supposing, for instance, that the fundamental relations of pitched
sounds in the science of harmony and of musical composition were
susceptible of such expression and adaptations, the engine might
compose elaborate and scientific pieces of music of any degree of
complexity or extent.

#20

Liberal Arts Trivia: Biology

• This family of non-venomous serpents contains
the longest snake in the world. They have
teeth, heat-sensing organs, and ambush prey.
They kill by a process of constriction:
sufficient pressure is applied to the prey to
prevent it from inhaling, and the prey
succumbs to asphyxiation and is swallowed
whole.

#21

Liberal Arts Trivia: Chemistry

• This element is a ductile metal with very high
thermal and electrical conductivity. When pure
and fresh it has a pinkish or peachy color, but
it turns green with age (oxidation). It has
played a significant role in the history of
humanity. In the Roman era it was usually
mined on Cyprus; hence the provenance of its
modern name (Cyprium to Cuprum).

Implementing Implementing
InterpretersInterpreters

#23

Why learn
Python?

#24

Reason 1: Vocational Skill

Python
Java
SQL
Scheme

Job listings at monster.com in Virginia
(27 March 2007, postings in last 3 months):

 770 $35-200K

 27 $40-200K

 55 $100-999K

1138 $60-400K
PS5, PS8 & 9

#25

“Schem
e” Jobs

#26

Reason 2: Expanding Minds

Languages change the way we think.

The more languages you know, the
more different ways you have of
thinking about (and solving) problems.

#27

“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in

1501 (first music with movable type)

#28

J S Bach, “Coffee Cantata”,
BWV 211 (1732)
www.npj.com/homepage/teritowe/jsbhand.html

“Jamais Jamais Jamais” from
Harmonice Musices Odhecaton A.
(1501)

#29

Reason 3: Deepening Understanding

By seeing how the same concepts we
encountered in Scheme are
implemented by a different language,
you will understand those concepts
better (especially classes/objects,
assignment, data abstraction).

#30

Reason 4: Building Confidence

By learning Python (mostly) on your
own, the next time you encounter a
problem that is best solved using a
language you don’t know, you will be
confident you can learn it (rather than
trying to use the wrong tool to solve the
problem).

#31

Reason 5: Fun

Programming in Python is fun.

Especially because:
• It is an elegant and simple language
• Most programs mean what you think they mean
• It is dynamic and interactive
• It can be used to build web applications (PS8, PS9)
• It is named after Monty Python’s Flying Circus
• It was designed by someone named Guido.

#32

Python
• A universal programming language

– Everything you can compute in Scheme you can
compute in Python, and vice versa

• Imperative Language
– Designed to support a programming where most

of the work is done using assignment
statements: x = e

– Means same thing as (set! x e)

• Object-Oriented Language
– Every data thing is an object
– Built in support for classes, inheritance

#33

Learning New Languages
• Syntax: Where the {, ;, $, etc. all go

– If you can understand a BNF grammar, this is easy

• Semantics: What does it mean
– Learning the evaluation rules
– Harder, but most programming languages have very

similar evaluation rules

• Style
– What are the idioms and customs of experienced

programmers in that language?
• Takes many years to learn
• Need it to be a “professional” Python programmer, but not to

make a useful program

#34

Python If
Instruction ::= if (Expression) :
 Block

Evaluate Expression. If it evaluates to
true, evaluate the Block.

It is similar to (if Expression (begin Statements))
Differences:
 Indenting and new lines matter!
 Changing the indentation changes meaning of code
 What “true” means:

Scheme: anything that is not #f.
Python: anything that is not False, None, 0,

and empty string or container

#35

Computability in Theory and
Practice

(Intellectual Computability
Discussion on TV Video)

(I hope this works!)

#36

Ali G Problem
• Input: a list of 2 numbers with up to d

digits each
• Output: the product of the 2 numbers

Is it computable?
Yes – a straightforward algorithm
solves it. Using elementary
multiplication techniques it is O(d2)

Can real computers solve it?

#39

Ali G was Right!
• Theory assumes ideal computers:

– Unlimited, perfect memory
– Unlimited (finite) time

• Real computers have:
– Limited memory, time, power outages, flaky

programming languages, etc.
– There are many computable problems we cannot

solve with real computer: the actual inputs do
matter (in practice, but not in theory!)

#40

Liberal Arts Trivia: Philosophy

• In the philosophy of mind, this is used to
describe views in which the mind and matter
are two ontologically separate categories. In
this, neither mind nor matter can be reduced
to each other in any way. This is typically
opposed to reductive materialism. A well-
known example of this is attributed to
Descartes, holding that the mind is a
nonphysical substance.

#41

Liberal Arts Trivia: Statistics

• A t-test is a statistical hypothesis test in which
the test statistic has a This distribution of the
null hypothesis is true. The This distribution
arises when estimating the mean of a normally
distributed population when the sample size is
small. It was first published by William Gosset
in 1908 while he worked at a Guinness Brewery
in Dublin. The brewery forbade the publication
of research by its staff members (!), so he
published the paper under a pseudonym.

#42

Implementing
Interpreters

#43

Inventing a Language
• Design the grammar

– What strings are in the language?
– Use BNF to describe all the strings in the

language

• Make up the evaluation rules
– Describe what everything the grammar can

produce means

• Build an evaluator
– A procedure that evaluates expressions in the

language

#44

Is this an exaggeration?
It is no exaggeration to regard this as the most
fundamental idea in programming:

The evaluator, which determines the
meaning of expressions in the programming
language, is just another program.
To appreciate this point is to change our images of
ourselves as programmers. We come to see
ourselves as designers of languages, rather than
only users of languages designed by others.

(SICP, p. 360)

#45

Environmental Model of Evaluation
• To evaluate a combination, evaluate all the

subexpressions and apply the value of the first
subexpression to the values of the other
subexpressions.

• To apply a compound procedure to a set of
arguments, evaluate the body of the procedure
in a new environment. To construct this
environment, make a new frame with an
environment pointer that is the environment of
the procedure that contains places with the
formal parameters bound to the arguments.

#46

EvalEval

ApplyApply

Eval and Apply
are defined in
terms of each
other.

#47

def meval(expr, env):
 if isPrimitive(expr):
 return evalPrimitive(expr)
 elif isConditional(expr):
 return evalConditional(expr, env)
 elif isLambda(expr):
 return evalLambda(expr, env)
 elif isDefinition(expr):
 evalDefinition(expr, env)
 elif isName(expr):
 return evalName(expr, env)
 elif isApplication(expr):
 return evalApplication(expr, env)
 else:
 evalError ("Unknown expression type: " + str(expr))

Implementing
meval

#48

def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 return proc(operands)
 elif isinstance(proc, Procedure):
 params = proc.getParams()
 newenv = Environment(proc.getEnvironment())
 if len(params) != len(operands):
 evalError ("Parameter length mismatch: ...")
 for i in range(0, len(params)):
 newenv.addVariable(params[i], operands[i])
 return meval(proc.getBody(), newenv)
 else:
 evalError("Application of non-procedure: %s" % (proc))

Implementing
mapply

#49

Homework

• Read GEB Aria, GEB 13 for Monday
• Reading Quiz #2 Monday
• Problem Set 7 due Mon April 06

