
Uncomputability,
Viruses, OOP

Avian Flu Virus

#2

One-Slide Summary
• In a proof by contradiction, to show that A cannot

exist you show that A implies the existence of X,
some known-to-be-impossible thing. To show that
A is undecidable or uncomputable, pick X to be
the halting problem (i.e., halts?).

• Determining if a program is a worm or a virus is
undecidable. Sad face.

• Object-oriented programming encapsulates state
and methods together into objects. This hides
implementation details (cf. inheritance) while
allowing methods to operate on many types of
input.

#3

Outline
• Proof By

Contradiction
• Undecidability

Examples
• Worms and Viruses
• OOP

– Sketchpad
– Simula
– PARC
– Smalltalk

#4

From the “blaming the victim” dept

• Some (but by no means all or even most) students expect the
TAs to help them get started on a problem when they “don't
even know how to begin”.

• At this point in CS 150 this is unacceptable
– I have not made this clear, so let me do so now.

• Happiness in CS 150 = managing expectations

• You should not expect that merely spending time on an
assignment will cause you to master it (cf. entitlement).
– Merely spending time at a piano won't make you a pianist.
– You are not doing yourself any long-term favors (e.g.,

exam2, the final) if you can't even get started without the
TAs.

#5

Concrete Suggestions
• If a problem initially mystifies you:

1. Review lecture notes from Class 4, slide 35+

2. Step back and take out a piece of paper.

3. Write down the inputs (and their types: list, int, etc.).

4. Write down the outputs (and their types).

5. Write down some example input-output pairs.

6. Is it a recursive procedure or not?

7. If it is, what gets smaller? Hint: pick one of the inputs.

8. Does it have any conditional behavior? If so, what?

9. Write out in your own words in English what the procedure
should do.

10. Come to Weimer's office hours.

• I have instructed the TA's to skip “what should I do?” questions
from people who cannot show 2-9 on a piece of paper.

#6

Informal Proof

 (define (paradox)
 (if (halts? ‘paradox)
 (loop-forever)
 #t))

If paradox halts, the if test is true and
 it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,
 and it evaluates to #t. It halts!

#7

Proof by Contradiction

Goal: Show A cannot exist.

1. Show X is nonsensical.

2. Show that if you have A you can make X.
3. Therefore, A must not exist.

X = paradox
A = halts? algorithm

#8

How convincing is our
Halting Problem proof?

 (define (paradox)
 (if (halts? ‘paradox)
 (loop-forever)
 #t))

If contradict-halts halts, the if test is true and it evaluates to
 (loop-forever) - it doesn’t halt!
If contradict-halts doesn’t halt, the if test if false, and it
 evaluates to #t. It halts!
This “proof” assumes Scheme exists and is consistent!
Scheme is too complex to believe this...we need a
simpler model of computation (in two weeks).

#9

Evaluates-to-3 Problem

Input: A procedure specification P
Output: true if evaluating (P) would

result in 3; false otherwise.
> (eval-to-three '(lambda () (+ 2 1)))
#t
> (eval-to-three '(lambda () (* 2 2)))
#f

Is “Evaluates to 3” computable?
#10

Proof by Contradiction

Goal: Show A cannot exist.

1. Show X is nonsensical.

2. Show that if you have A you can make X.
3. Therefore, A must not exist.

X = halts? algorithm
A = evaluates-to-3? algorithm

#11

Undecidability Proof

Suppose we could define evaluates-to-3? that
decides it. Then we could define halts?:

(define (halts? P)
 (evaluates-to-3?
 ‘(lambda () (begin (P) 3))))

if #t: it evaluates to 3, so we know (P) must halt.

if #f: the only way it could not evaluate to 3, is if (P)
doesn’t halt. (Note: assumes (P) cannot produce an
error.)

#12

Hello-World Problem

Input: An expression specification E
Output: true if evaluating E would

print out “Hello World!”; false
otherwise.

Is the Hello-World Problem computable?

#13

Uncomputability Proof

Suppose we could define prints-hello-world?
that solves it. Then we could define halts?:

(define (halts? P)
 (prints-hello-world?
 ‘(begin ((remove-prints P))
 (print “Hello World!”))))

#14

Proof by Contradiction

Goal: Show A cannot exist.

1. Show X is nonsensical.

2. Show that if you have A you can make X.
3. Therefore, A must not exist.

X = halts? algorithm
A = prints-hello-world? algorithm

#15

Liberal Arts Trivia: British History

• This 968-1016 king of England spent the
majority of his reign in a defensive war
against Danish invaders. His nickname means
"evil counsel", "bad plan", "folly", or “ill-
advised” in Old English. The invective is
actually focused on those around him, who
were expected to provide the young king with
good advice.

#16

Liberal Arts Trivia: Modern Cinema
and English Language

• Name the two-time Emmy award-winning
actor who appeared in movies with titles
“synonymous” to these:
– Fiber Fabrication
– Immoral Metropolis
– Fail Difficult
– Invincible
– The Right-To-Remain-Silent Component
– Catastrophe
– The Distance-From-Kevin-Bacon Awareness

#17

From Paul Graham’s “Undergraduation”:
My friend Robert learned a lot by writing network software when
he was an undergrad. One of his projects was to connect
Harvard to the Arpanet; it had been one of the original nodes,
but by 1984 the connection had died. Not only was this work
not for a class, but because he spent all his time on it and
neglected his studies, he was kicked out of school for a year.
... When Robert got kicked out of grad school for writing the
Internet worm of 1988, I envied him enormously for finding a
way out without the stigma of failure.
... It all evened out in the end, and now he’s a professor at MIT.
But you’ll probably be happier if you don’t go to that extreme; it
caused him a lot of worry at the time.

3 years of probation, 400 hours of community service, $10,000+ fine

#18

Worm Detection Problem
Input: A program P and input I

Output: true if evaluating (P I) would
cause a remote computer to be
“infected”.

Virus Detection Problem
Input: A program specification P

Output: true if evaluating (P) would cause a
file on the host computer to be “infected”.

#19

Morris Internet Worm (1988)
• P = fingerd

– Program used to query user status
– Worm also attacked other programs

• I = “nop400 pushl $68732f pushl $6e69622f movl
sp,r10 pushl $0 pushl $0 pushl r10 pushl $3 movl
sp,ap chmk $3b”

(is-worm? ‘(P I)) should evaluate to #t
• Worm infected several thousand computers

(~10% of Internet in 1988)

#20

Computer Security Paradoxes

• Is is-virus? computable?

#21

Uncomputability Proof

Suppose we could define is-virus? Then:

(define (halts? P)
 (is-virus?
 ‘(lambda ()
 (begin ((remove-infects P))
 (infect-files)))))

#22

Uncomputability Proof

(define (halts? P)
 (is-virus?
 ‘(lambda ()
 (begin ((remove-infects P))
 (infect-files)))))

#t: Since it is a virus, we know (infect-files) was
evaluated, and P must halt.

#f: The (infect-files) would not evaluate, so P
must not halt.

Can we make
remove-
infects?

Yes, just remove
all file writes.

#23

“Solving” Undecidable Problems
• No perfect solution exists:

– Undecidable means there is no procedure that:
• 1. Always gives the correct answer
• and also 2. Always terminates

• Must give up one of these to “solve”
undecidable problems
– Giving up #2 is not acceptable in most cases
– Must give up #1

• Or change the problem: e.g., detect file
infections during an execution

#24

Conclusion?

• Anti-Virus programs cannot exist!

“The Art of Computer Virus
Research and Defense”
Peter Szor, Symantec

#25

Actual is-virus? Programs
• Give the wrong answer sometimes

– “False positive”: say P is a virus when it isn’t
– “False negative”: say P is safe when it is

• Database of known viruses: if P matches one
of these, it is a virus

• Clever virus authors can make viruses that
change each time they propagate
– Emulate program for a limited number of steps;

if it doesn’t do anything bad, assume it is safe

#26

Proof Recap

• If we had is-virus? we could define halts?
• We know halts? is undecidable
• Hence, we can’t have is-virus?
• Thus, we know is-virus? is undecidable

#27

History of
Object-Oriented

Programming

#28

Pre-History:
MIT’s Project Whirlwind (1947-1960s)

Jay Forrester

#29

Why Whirlwind?

0

10000

20000

30000

40000

50000

60000

1940 1950 1960 1970 1980 1990 2000 2010 2020

Hiroshima (12kt), Nagasaki (20kt)

First H-Bomb (10Mt)

Tsar Bomba (largest ever)

B83 (1.2Mt), largest
in currently active arsenal

From an earlier class ...

Soviet Union test
atomic bomb
(Aug 29, 1949)

#30

Whirlwind Innovations

Magnetic Core Memory
(first version used vacuum tubes)
... the first computer that operated in real time, used video displays for output,
and the first that was not simply an electronic replacement of older mechanical
systems. Its development led directly to the United States Air Force's Semi
Automatic Ground Environment (SAGE) system, and indirectly to almost all
business computers and minicomputers in the 1960s.

#31

Sketchpad

• Ivan Sutherland,
1963 (PhD thesis
supervised by
Claude Shannon)

• Interactive
drawing program

• Light pen
• Turing Award

1988

http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-574.pdf

#32

Components
in Sketchpad

Actual Sketchpad:

#33

Objects in Sketchpad
In the process of making the Sketchpad system operate, a few very
general functions were developed which make no reference at all to the
specific types of entities on which they operate. These general functions
give the Sketchpad system the ability to operate on a wide range of
problems. The motivation for making the functions as general as
possible came from the desire to get as much result as possible from
the programming effort involved. For example, the general function for
expanding instances makes it possible for Sketchpad to handle any
fixed geometry subpicture. The rewards that come from implementing
general functions are so great that the author has become reluctant to
write any programs for specific jobs.
 Each of the general functions implemented in the Sketchpad system
abstracts, in some sense, some common property of pictures
independent of the specific subject matter of the pictures themselves.

Ivan Sutherland, Sketchpad: a Man-Machine
Graphical Communication System, 1963 (major
influence on Alan Kay developing OOP in 1970s)

#34

Liberal Arts Trivia: Geography
• Name the most populous metropolitan area on Earth.

It contains 23 special wards, each one of which is
governed as a city, totaling 35 million people. It
houses a National Diet Building and an orange-
colored “copy” of the Eiffel Tower. It sustained
damage in a 1923 earthquake and later firebombing.

#35

Liberal Arts Trivia: Music

• This traditionally-female vocal range lies
below mezzo-soprano, and is usually viewed
as the deepest female singing voice. The
typical range lies between the F below middle
C (F3) to two Fs above middle C (F5). Ruth in
Gilbert and Sullivan's Pirates of Penzance and
Lel in Rimsky-Korsakov's The Snow Maiden are
example operatic roles.

#36

Simula

• Considered the first “object-oriented”
programming language

• Language designed for simulation by
Kristen Nygaard and Ole-Johan Dahl
(Norway, 1962)

• Had special syntax for defining classes
that package state and procedures
together

#37

Counter in Simula
class counter;

 integer count;

 begin
 procedure reset(); count := 0; end;

 procedure next();

 count := count + 1; end;
 integer procedure current();

 current := count; end;

 end

#38

XEROX Palo Alto Research Center (PARC)

1970s:
• Bitmapped display
• Graphical User Interface

– Steve Jobs paid $1M to visit PARC (bought
their stock), and returned to make Apple
Lisa/Mac

• Ethernet
• First personal computer (Alto)
• PostScript Laser Printers
• Object-Oriented Programming

#39

Dynabook, 1972
(Just a model)

“Don’t worry about what
anybody else is going to

do… The best way to predict
the future is to invent it.

Really smart people with
reasonable funding can do

just about anything that
doesn't violate too many of

Newton's Laws!”
— Alan Kay, 1971

#40

Dynabook 1972
• Tablet computer
• Intended as tool for learning
• Kay wanted children to program it also
• Hallway argument, Kay claims you could

define “the most powerful language in the
world in a page of code”

• Proof: Smalltalk
– Scheme is as powerful, but takes two pages
– Before the end of CS 150, we will see an equally

powerful language that fits in ¼ page

#41

BYTE
Magazine,

August
1981

#42

Smalltalk

• Everything is an object
• Objects communicate by sending and

receiving messages
• Objects have their own state (which may

contain other objects)
• How do you do 3 + 4?

send the object 3 the message “+ 4”

#43

Counter in Smalltalk

class name counter

 instance variable names count

 new count <- 0

 next count <- count + 1

 current ^ count

#44

Counter in Python

class counter:
 def __init__(self): self._count = 0
 def reset(self): self._count = 0
 def next(self): self._count = self._count + 1
 def current(self): return self._count

counter() creates a new counter using the __init__ method
count is the instance variable (is just a naming convention)

#45

Who was the first
object-oriented
programmer?

#46

By the word operation, we mean any process which
alters the mutual relation of two or more things, be this
relation of what kind it may. This is the most general
definition, and would include all subjects in the universe.
 Again, it might act upon other things besides number,
were objects found whose mutual fundamental relations
could be expressed by those of the abstract science of
operations, and which should be also susceptible of
adaptations to the action of the operating notation and
mechanism of the engine... Supposing, for instance, that
the fundamental relations of pitched sounds in the
science of harmony and of musical composition were
susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of
music of any degree of complexity or extent.

Ada, Countess of Lovelace, around 1843

#47

Homework
• Read Chapter 12 for Wednesday
• PS 7 due Monday April 6

