One-Slide Summary

- **Inheritance** allows a subclass to share behavior (methods and instance variables) with a superclass.
- A **class hierarchy** shows how subclasses inherit from superclasses. Typically a single ultimate class, such as *object*, lies at the top of a class hierarchy.
- An **axiomatic system** provides a way to reason mechanically about formal notions. An **incomplete** system fails to prove some true statements. An **inconsistent** system proves some false statements.
- Any interesting logical system is **incomplete**: there is a true statement that cannot be proved in it.

Outline

- Inheritance
- PS6
- Mechanical Reasoning
- Axiomatic Systems
- Paradoxes
- Gödel

Object-Oriented Terminology

- An **object** is an entity that packages state and procedures.
- The state variables that are part of an object are called **instance variables**.
- The procedures that are part of an object are called **methods**.
- We **invoke** (call) a method by sending the object a **message**.
- A **constructor** is a procedure that creates new objects (e.g., make-dog).

Inheritance

Inheritance is using the definition of one class to make another class:

make-scooby uses make-dog to **inherit** the behaviors (methods and instance variables) of dog.

Speaking about Inheritance

Scooby **inherits** from Dog.

Scooby is a **subclass** of Dog.

The **superclass** of Scooby is Dog.
PS6
Make an adventure game programming with objects

Many objects in our game have similar properties and behaviors, so we use inheritance.

PS6 Classes

- sim-object
- physical-object
- place
- mobile-object
- thing
- person
- student
- police-officer

make-class is the procedure for constructing objects in the class class

student inherits from person which inherits from mobile-object which inherits from physical-object which inherits from sim-object.

Are there class hierarchies like this in the “real world” or just in fictional worlds like Charlottansville?

Microsoft Foundation Classes

- CObject
 - CWnd
 - CObject
 - CMemdc
 - CRect
 - CSize
 - CPoint
 - CBrush
 - CClientDC
 - CClient
 - CWnd
 - CDialog
 - CFile

CButton inherits from CWnd inherits from CObject
A button is a kind of window is a kind of object

Java 3D Class Hierarchy Diagram

Not at all uncommon to have class hierarchies like this!
Hierarchies
• Designing a class hierarchy is a tricky task
• More on it in later CS courses (e.g., 205)

Quiz Wednesday
• Short Reading Quiz In Class

Liberal Arts Trivia: Physics
• Name the vector quantity in physics measured in radians per second. The direction of the vector is perpendicular to the plane of rotation and is usually specified by the “right hand rule”.

Liberal Arts Trivia: Chemistry
• Give the common name for hydragyrum, a heavy metal element. It is the only element that is liquid at standard temperature and pressure and is often used in the construction of sphygmomanometers. In the 18th to 19th centuries it was used to make felt hats, and the psychological symptoms associated with its poisoning are sometimes used to explain the phrase “mad as a hatter”.
 • Bonus: What does a sphygmomanometer measure?

Story So Far
• Much of the course so far:
 - Getting comfortable with recursive definitions
 - Learning to write a program to do (almost) anything (PS1-4)
 - Learning more elegant ways of programming (PS5-6)
• This Week:
 - Getting un-comfortable with recursive definitions
 - Understanding why there are some things no program can do!

Computer Science/Mathematics
• Computer Science (Imperative Knowledge)
 - Are there (well-defined) problems that cannot be solved by any procedure?
• Mathematics (Declarative Knowledge)
 - Are there true conjectures that cannot be shown using any proof?
Mechanical Reasoning

Aristotle (~350BC): *Organon*
Codify logical deduction with rules of inference (syllogisms)

\[\text{Every } A \text{ is a } P \]
\[X \text{ is an } A \]
\[X \text{ is a } P \]

Premises	Conclusion

Every human is mortal.
Gödel is human.
Gödel is mortal.

More Mechanical Reasoning

- Euclid (~300BC): *Elements*
 - We can reduce geometry to a few axioms and derive the rest by following rules

- Newton (1687): *Philosophiæ Naturalis Principia Mathematica*
 - We can reduce the motion of objects (including planets) to following axioms (laws) mechanically

Mechanical Reasoning

- Late 1800s - many mathematicians working on codifying “laws of reasoning”
 - George Boole, *Laws of Thought*
 - Augustus De Morgan
- Whitehead and Russell, 1911-1913
 - *Principia Mathematica*
 - Attempted to formalize all mathematical knowledge about numbers and sets

Perfect Axiomatic System

Derives all true statements, and no false statements starting from a finite number of axioms and following mechanical inference rules.

Incomplete Axiomatic System

Derives some, but not all true statements, and no false statements starting from a finite number of axioms and following mechanical inference rules.
Inconsistent Axiomatic System

Derives all true statements, and some false statements starting from a finite number of axioms and following mechanical inference rules.

Principia Mathematica

- Whitehead and Russell (1910-1913)
 - Three Volumes, 2000 pages
- Attempted to axiomatize mathematical reasoning
 - Define mathematical entities (like numbers) using logic
 - Derive mathematical “truths” by following mechanical rules of inference
 - Claimed to be complete and consistent
 - All true theorems could be derived
 - No falsehoods could be derived

Russell’s Paradox

- Some sets are not members of themselves
 - set of all Students
- Some sets are members of themselves
 - set of all things that are not Students
- \(S = \text{the set of all sets that are not members of themselves} \)
- Is \(S \) a member of itself?

End of Russell’s Paradox

Ban Self-Reference?

- \textit{Principia Mathematica} attempted to resolve this paragraph by banning self-reference
- Every set has a type
 - The lowest type of set can contain only “objects”, not “sets”
 - The next type of set can contain objects and sets of objects, but not sets of sets

Russell’s Resolution?

Set ::= Set
Set_0 ::= \{ x \mid x \text{ is an Object} \}
Set_n ::= \{ x \mid x \text{ is an Object or a } Set_{n-1} \}

\(S : Set_n \)
Is \(S \) a member of itself?
Russell’s Resolution?

Set ::= Set

Set₀ ::= \{ x | x is an Object \}
Setₙ ::= \{ x | x is an Object or a Setₙ⁻¹ \}

S: Set
Is S a member of itself?
No, it is a Setᵣ so, it can’t be a member of a Setᵣ

Epimenides Paradox

Epimenides (a Cretan):
“All Cretans are liars.”

Equivalently:
“This statement is false.”

Russell’s types can help with the set paradox, but not with these.

Liberal Arts Trivia: English Literature and Drama

• Name the tragedy by Shakespeare parodied below by Tatsuya Ishida.
• Bonus points: the blank of animals.

Liberal Arts Trivia: Woodworking

• This woodworking joinery technique is noted for its tensile strength (resistance to being pulled apart). A series of pins are cut from the end of one board and interlock with a series of tails cut into the end of another. Once glued it requires no fasteners.

Gödel’s Solution

All consistent axiomatic formulations of number theory include undecidable propositions.

(GEB, p. 17)

undecidable - cannot be proven either true or false inside the system.

Kurt Gödel

• Born 1906 in Brno (now Czech Republic, then Austria-Hungary)
• 1931: publishes Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (On Formally Undecidable Propositions of Principia Mathematica and Related Systems)
<table>
<thead>
<tr>
<th>Gödel’s Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the Principia Mathematica system, there are statements that cannot be proven either true or false.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gödel’s Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>All logical systems of any complexity are incomplete: there are statements that are true that cannot be proven within the system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof - General Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem: In the Principia Mathematica system, there are statements that cannot be proven either true or false.</td>
</tr>
<tr>
<td>Proof: Find such a statement!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gödel’s Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>G: This statement does not have any proof in the system of Principia Mathematica.</td>
</tr>
<tr>
<td>G is unprovable, but true!</td>
</tr>
</tbody>
</table>

- 1939: flees Vienna
- Institute for Advanced Study, Princeton
- Died in 1978 – convinced everything was poisoned and refused to eat
- Gödel’s Theorem
- In any interesting rigid system, there are statements that cannot be proven either true or false.

<table>
<thead>
<tr>
<th>Gödel’s Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>G is unprovable, but true!</td>
</tr>
</tbody>
</table>

Why?
Gödel’s Proof Idea

G: This statement does not have any proof in the system of PM.

If G is provable, PM would be inconsistent.
If G is unprovable, PM would be incomplete.

Thus, PM cannot be complete and consistent!

Homework

- Read Chapter 11
- Short In-Class Quiz Wednesday
- PS6 Due Mon Mar 23