One-Slide Summary Objectifying and Programming Real databases, unlike PS5, have many with **Objects** concerns, such as scalability and atomic transactions. An object packages state and procedures. • A procedure on an object is called a method. We invoke a method by sending the object a message. • Inheritance allows one object to refine and reuse the behavior of another. This is a good thing. Outline Interlude: PS5 vs. Wild • PS5 vs. the Real World How are commercial databases different Problem Sets and PS9 from what you implemented for PS5? An Better "Counter" UVa's Integrated Systems Project to Object-Oriented convert all University information Programming systems to use an Oracle database was - Object = State + originally budgeted for \$58.2 Million **Methods** (starting in 1999). Actual cost ended up over \$100 Million. Inheritance http://www.virginia.edu/isp/ **Real Databases** How big are big databases? • Atomic Transactions: a transaction may involve many modifications to database tables, but the changes should only Microsoft TerraServer happen if the whole transaction happens (e.g., don't charge the - Claimed biggest in 1998 credit card unless the order is sent to the shipping dept) - Aerial photos of entire US (1 meter resolution) • Security: limit read/write access to tables, - Let's see an example ... entries and fields

- Storage: need to efficiently store data on disk, provide backup mechanisms
- Scale: to support really big data tables, real databases do lots of clever things

Course	<section-header> Big Databases Microsoft TerraServer 3.3 Terabytes (claimed biggest in 1998) 1 Terabyte = 2⁴⁰ Bytes ~ 1 Trillion Bytes 1 Terabyte = 2⁴⁰ Bytes ~ 1 Trillion Bytes 6 Coogle Maps (possibly bigger?) Better color Better color Wal-Mart 285 Terabytes (2003) </section-header>
How much work?	How much work?
 Suppose we have a huge database. table-select is in Θ(n) where n is the number of entries in the table Would your table-select work for Wal-Mart? If 1M entry table takes 1s, how long would it take Wal-Mart to select from 285TB ~ 2 Trillion Entries? 	 table-select is in Θ(n) where n is the number of entries in the table Would your table-select work for Wal-Mart? If 1M entry table takes 1s, how long would it take Wal-Mart to select from 285TB ~ 2 Trillion Entries? 2 000 000s = ~ 23 days How do expensive databases perform table-select so much faster? Hint: How did we make sorting faster?
Problem Sets after PS5	PS9 Assignment
PS6: Programming with Objects Scheme PS7: Implementing Interpreters SQL, PS8: Dynamic Web Application Python PS9: Project Build a <i>new</i> dynamic web application SQL,	 Problem: Make an interesting dynamic web site. Problem: Make an interesting dynamic web site. Teams of 1-78 students Can be anything you want that: Involves interesting computation Follows University's use policies (or on external server) Complies with ADA Section 508 (accessible)

Can You Solve The Mystery?

(define make-dog

(lambda (message)

- (cond ((eq? message 'speak) (woof")
- ((eq? message 'solve-mystery)
- "<dogs cannot solve mysteries!>")

)))

- > (define lassie (make-dog)) > (define scooby-doo (make-scooby
- (make-dog))
- > (ask lassie 'speak)
- "woof
- > (ask lassie 'solve-mystery)
- <dogs cannot solve mystery!>"
- > (ask lassie 'snack) ;; nothing

(define make-scooby

- (lambda (superclass) (lambda (message) (cond ((eq? message 'solve-mystery) "Scooby solves the mystery!") ((eq? message 'snack) "Scooby snacks!"))
- (else (ask superclass message)))))

(else (ask superclass message)

#38

Can You Solve The Mystery?

(define make-dog

- (lambda (message) (cond ((eq? message 'speak)
- woof") ((eq? message 'solve-mystery) "<dogs cannot solve mysteries!>")

)))

#39

#41

- > (define lassie (make-dog)) > (define scooby-doo (make-scooby (make-dog)) > (ask scooby-doo 'speak) ???
- > (ask scooby-doo 'solve-mystery) ???
- > (ask scooby-doo 'snack) ???

(define make-scooby

- (lambda (superclass) (lambda (message) (cond ((eq? message 'solve-mystery) "Scooby solves the mystery!")
 - ((eq? message 'snack)
- "Scooby snacks!")) (else (ask superclass message)
-))))

#40

Can You Solve The Mystery?

))))

(define make-dog

(lambda (message) (cond ((eq? message 'speak) "woof") ((eq? message 'solve-mystery)

"<dogs cannot solve mysteries!>")

> (define lassie (make-dog)) > (define scooby-doo (make-scooby (make-dog)) > (ask scooby-doo 'speak) "woof" > (ask scooby-doo 'solve-mystery) "Scooby solves the mystery!" > (ask scooby-doo 'snack) "Scooby snacks!"

(define make-scooby

- (lambda (superclass) (lambda (message) (cond ((eq? message 'solve-mystery)
- "Scooby solves the mystery!") ((eq? message 'snack) "Scooby snacks!"))
- (else (ask superclass message)

You're a Mystery Machine! (define make-dog (define make-scooby

- (lambda (message) (lambda (superclass) (cond ((eq? message 'speak) (lambda (message) "woof") (cond ((eq? message 'solve-mystery) ((eq? message 'solve-mystery) "<dogs cannot solve mysteries!>") "Scooby solves the mystery!")))) ((eq? message 'snack) > (define lassie (make-dog)) "Scooby snacks!")) > (define scooby-doo (make-scooby (else (ask superclass message) (make-dog)) > (ask scooby-doo 'speak) Inherit behavior ('speak) "woof" > (ask scooby-doo 'solve-mystery)Inherit and Override behavior ('solve-mystery) "Scooby solves the mystery!" New behavior ('snack)
 - > (ask scooby-doo 'snack) "Scooby snacks!"

#42

 Object-Oriented Terminology An object is an entity that packages state and procedures. The state variables that are part of an object are called instance variables. The procedures that are part of an object are called methods. We invoke (call) a method by sending the object a message. A constructor is a procedure that creates new objects (e.g., make-dog). 	 Charge Start PS6 early You can turn in PS5 up to Friday (popular demand), but the clock is ticking for PS6! PS6 is challenging Opportunity for creativity Start thinking about PS9 Project ideas If you want to do an "extra ambitious" project convince me your idea is worthy before March 26 (ps7 and 8)/April 4 (ps8) Discuss ideas and look for partners on the forum
Homework	

#45

• PS 5 due Friday

- Extension granted.
- PS 6 due Monday March 23rd
- Read GEB Chapters 2-4 and 6-9