
Objectifying and Programming
with Objects

#2

One-Slide Summary
• Real databases, unlike PS5, have many

concerns, such as scalability and atomic
transactions.

• An object packages state and procedures.
• A procedure on an object is called a method.

We invoke a method by sending the object a
message.

• Inheritance allows one object to refine and
reuse the behavior of another. This is a good
thing.

#3

Outline
• PS5 vs. the Real World
• Problem Sets and PS9
• An Better “Counter”
• Object-Oriented

Programming
– Object = State +

Methods

• Inheritance

#4

Interlude: PS5 vs. Wild

How are commercial databases different
from what you implemented for PS5?

UVa’s Integrated Systems Project to
convert all University information
systems to use an Oracle database was
originally budgeted for $58.2 Million
(starting in 1999). Actual cost ended up
over $100 Million.

http://www.virginia.edu/isp/

#5

Real Databases
• Atomic Transactions: a transaction may involve many

modifications to database tables, but the changes should only
happen if the whole transaction happens (e.g., don’t charge the

credit card unless the order is sent to the shipping dept)

• Security: limit read/write access to tables,
entries and fields

• Storage: need to efficiently store data on disk,
provide backup mechanisms

• Scale: to support really big data tables,
real databases do lots of clever things

#6

How big are big databases?

• Microsoft TerraServer
– Claimed biggest in 1998
– Aerial photos of entire US (1 meter resolution)
– Let's see an example ...

#7

You are hereYou are here

RotundaRotunda

AmphitheaterAmphitheater

#8

Big Databases
• Microsoft TerraServer

– 3.3 Terabytes (claimed biggest in 1998)
– 1 Terabyte = 240 Bytes ~ 1 Trillion Bytes

• Google Maps (possibly bigger?)
– Better color ...

• Wal-Mart
– 285 Terabytes (2003)

• Stanford Linear Accelerator (BaBar)
– 500 Terabytes (30 KB per particle collision)

#9

How much work?

• Suppose we have a huge database.

• table-select is in Θ(n) where n is the
number of entries in the table
– Would your table-select work for Wal-Mart?
– If 1M entry table takes 1s, how long would it

take Wal-Mart to select from 285TB ~ 2 Trillion
Entries?

#10

How much work?

• table-select is in Θ(n) where n is the
number of entries in the table
– Would your table-select work for Wal-Mart?
– If 1M entry table takes 1s, how long would it

take Wal-Mart to select from 285TB ~ 2 Trillion
Entries? 2 000 000s = ~ 23 days

How do expensive databases perform table-select
so much faster?
Hint: How did we make sorting faster?

#11

Problem Sets after PS5

PS6: Programming with Objects

PS7: Implementing Interpreters

Scheme

PythonPS8: Dynamic Web Application

PS9: Project
Build a new

dynamic web application

SQL,
HTML,
JavaScript

#12

PS9 Assignment

• Teams of 1-78 students
• Can be anything you want that:

– Involves interesting computation
– Follows University’s use policies (or on

external server)
– Complies with ADA Section 508 (accessible)

Problem: Make an interesting dynamic web site.

A list of example
topics is provided.

#13

PS6: Programming with Objects

PS7: Implementing Interpreters

PS8: Dynamic Web Application

PS9: Project
Build a dynamic web application

PS6

PS7

Extra Ambitious
PS9 Project

PS6

Super Ambitious
PS9 Project

Default Negotiate with Wes in advance

Exam 2

#14

Liberal Arts Trivia: Biology

• This egg-laying, venomous (from a calcaneus
spur found on the hind limb), beaver-tailed,
otter-footed mammal is perhaps best known
for its “nose”, which follows the style of the
Anatidae family of birds. It is native to eastern
Australia and Tasmania, and occurs on the
Australian 20 cent coin.

#15

Liberal Arts Trivia: Art History

• Name the Spanish surrealist artist who painted
The Persistence of Memory (oil on canvas,
1931).

#16

environment:
parameters: ()
body:
(begin (set! x (+ x 1)) x)

Recall from before: nextx
(define x 0)
(define (nextx)
 (set! x (+ x 1))
 x)
> (nextx)
1
> (set! x 23)
> (next x)
24

global
environment

+ : #<primitive:+>

nextx: x : 24

J. Random Luser can come along and change
our counter! This is bad.

#17

A Better Counter

• The place that keeps track of the
count should be part of the counter,
not part of the global environment
– Can have more than one counter
– Counter state is encapsulated: can only

be modified by counter procedure

• Can we do this?

#18

Recall: Application Rule 2:
1. Construct a new environment, whose

parent is the environment to which the
environment pointer of the applied
procedure points.

2. Create a place in that frame for each
parameter containing the value of the
corresponding operand expression.

3. Evaluate the body in the new environment.
Result is the value of the application.

#19

A Better Counter

(define (make-counter)
 ((lambda (count)
 (lambda ()
 (set! count (+ 1 count))
 count))
 0))

Very slick! We “make our own” zero to start off the counter
(purple text).

#20

Sweeter Version

(define (make-counter)
 (let ((count 0))
 (lambda ()
 (set! count (+ 1 count))
 count)))

This is easier to read (syntactic sugar), but means the
same thing. The place for count is created because of
the let on this slide and the application on the previous
slide mean the same thing.

#21

environment:
parameters: ()
body: ((lambda …

global
environment

+ : #<primitive:+>

make-counter:

(define (make-counter)
 ((lambda (count)
 (lambda ()
 (set! count (+ 1 count))
 count))
 0))

#22

environment:
parameters: ()
body: (lambda () (set! count …)

environment:
parameters: ()
body: ((lambda …

> (define mycount
 (make-counter))

global
environment

+ : #<primitive:+>

make-counter:

count : 0

(define (make-counter)
 ((lambda (count)
 (lambda ()
 (set! count (+ 1 count))
 count))
 0))

mycount:

#23

environment:
parameters: ()
body: (lambda () (set! count …)

environment:
parameters: ()
body: ((lambda …

> (define mycount
 (make-counter))
> (mycount)
1

global
environment

+ : #<primitive:+>

make-counter:

count : 1

(define (make-counter)
 ((lambda (count)
 (lambda ()
 (set! count (+ 1 count))
 count))
 0))

mycount:

#24

environment:
parameters: ()
body: (lambda () (set! count …)

environment:
parameters: ()
body: ((lambda …

> (define mycount
 (make-counter))
> (mycount)
1
> (mycount)
2

global
environment

+ : #<primitive:+>

make-counter:

count : 2

(define (make-counter)
 ((lambda (count)
 (lambda ()
 (set! count (+ 1 count))
 count))
 0))

mycount:

#25

environment:
parameters: ()
body: (lambda () (set! count …)

environment:
parameters: ()
body: ((lambda …

> (define mycount
 (make-counter))
> (mycount)
1
> (mycount)
2
> (mycount)
3

global
environment

+ : #<primitive:+>

make-counter:

count : 3

(define (make-counter)
 ((lambda (count)
 (lambda ()
 (set! count (+ 1 count))
 count))
 0))

mycount:

#26

An Even Better Counter
(define (make-counter)
 (let ((count 0))
 (lambda (message)
 (cond ((eq? message ’reset!)
 (set! count 0))
 ((eq? message ’next!)
 (set! count (+ 1 count)))
 ((eq? message ’current) count)
 (else
 (error "Unrecognized message"))))))

In object-oriented programming,
state is encapsulated with
methods that operate on that
state. Methods are invoked by
sending messages.

In Scheme, the single quote (as in 'current) just means “I am making up a
symbol or a message name.” See the textbook for more info.

#27

Using Counter

> (define oocounter (make-counter))
> (oocounter 'next)
> (oocounter 'next)
> (oocounter 'next)
> (oocounter 'how-many)
3
> (oocounter 'reset)
> (oocounter 'how-many)
0

#28

Objects

An object packages:
– state (“instance variables”)
– procedures for manipulating
and observing that state
(“methods”)

Why is this useful?

#29

Problem-Solving Strategies

• PS1-PS4: Functional Programming
– Focused on procedures
– Break a problem into procedures that can be

combined to solve it

• PS5: Imperative Programming
– Focused on data
– Design data for representing a problem and

procedures for updating that data

#30

Problem-Solving Strategies

• PS6: Object-Oriented Programming
– Focused on objects: package procedures and

state
– Model a problem by dividing it into objects
– Lots of problems in real (and imaginary)

worlds can be thought of this way

#31

Liberal Arts Trivia: Art History and
American Literature

• Give the Renaissance master (or Ninja Turtle)
associated with each work of art:

(a) Tomb of Antipope John XXIII

(b) Mona Lisa

(c) Pieta

(d) Transfiguration

#32

Liberal Arts Trivia: Cooking

• This Japanese delicacy is vinegared rice,
usually topped with other ingredients,
including fish. The dish as we know it today
was invented as a fast food by Hanaya Yohei at
the end of the Edo period (19th century) in
Tokyo: it could be eaten on the road side or in
a theatre using fingers or chopsticks. The basic
idea can be traced back to 4th century BCE
China as a preservative: the fermentation of
the rice prevents the fish from spoiling.

#33

Counter Object
(define (make-counter)
 (let ((count 0))
 (lambda (message)
 (cond ((eq? message ’reset!)
 (set! count 0))
 ((eq? message ’next!)
 (set! count (+ 1 count)))
 ((eq? message ’current) count)
 (else
 (error "Unrecognized message"))))))

Instance variable

Methods

#34

Defining ask

> (define oocounter (make-counter))
> (ask oocounter 'current)
0
> (ask oocounter 'next)
> (ask oocounter 'current)
1

(ask Object Method)

(define (ask object message)
 (object message))

#35

Inheritance

#36

The Truth About Dogs and Dogs

• There are many types of dogs out there,
but most of them behave similarly.

(define make-dog
 (lambda (message)
 (cond ((eq? message 'speak) “woof”)
 ((eq? message 'solve-mystery)
 “<dogs cannot solve mysteries!>”)
)))

#37

make-scooby
(define make-scooby
 (lambda (superclass) ;; normal dog
 (lambda (message)
 (cond
 ((eq? message 'solve-mystery)
 “Scooby solves the mystery!”)
 ((eq? message 'snack)
 “Scooby snacks!”))
 (else (ask superclass message)
))))

#38

Can You Solve The Mystery?
(define make-dog

 (lambda (message)

 (cond ((eq? message 'speak)
“woof”)

 ((eq? message 'solve-mystery)

 “<dogs cannot solve mysteries!>”)

)))

(define make-scooby

 (lambda (superclass)

 (lambda (message)

 (cond

 ((eq? message 'solve-mystery)

 “Scooby solves the mystery!”)

 ((eq? message 'snack)

 “Scooby snacks!”))

 (else (ask superclass message)

))))

> (define lassie (make-dog))
> (define scooby-doo (make-scooby
 (make-dog))
> (ask lassie 'speak)
???
> (ask lassie 'solve-mystery)
???
> (ask lassie 'snack)
???

#39

Can You Solve The Mystery?
(define make-dog

 (lambda (message)

 (cond ((eq? message 'speak)
“woof”)

 ((eq? message 'solve-mystery)

 “<dogs cannot solve mysteries!>”)

)))

(define make-scooby

 (lambda (superclass)

 (lambda (message)

 (cond

 ((eq? message 'solve-mystery)

 “Scooby solves the mystery!”)

 ((eq? message 'snack)

 “Scooby snacks!”))

 (else (ask superclass message)

))))

> (define lassie (make-dog))
> (define scooby-doo (make-scooby
 (make-dog))
> (ask lassie 'speak)
“woof”
> (ask lassie 'solve-mystery)
“<dogs cannot solve mystery!>”
> (ask lassie 'snack)
;; nothing

#40

Can You Solve The Mystery?
(define make-dog

 (lambda (message)

 (cond ((eq? message 'speak)
“woof”)

 ((eq? message 'solve-mystery)

 “<dogs cannot solve mysteries!>”)

)))

(define make-scooby

 (lambda (superclass)

 (lambda (message)

 (cond

 ((eq? message 'solve-mystery)

 “Scooby solves the mystery!”)

 ((eq? message 'snack)

 “Scooby snacks!”))

 (else (ask superclass message)

))))

> (define lassie (make-dog))
> (define scooby-doo (make-scooby
 (make-dog))
> (ask scooby-doo 'speak)
???
> (ask scooby-doo 'solve-mystery)
???
> (ask scooby-doo 'snack)
???

#41

Can You Solve The Mystery?
(define make-dog

 (lambda (message)

 (cond ((eq? message 'speak)
“woof”)

 ((eq? message 'solve-mystery)

 “<dogs cannot solve mysteries!>”)

)))

(define make-scooby

 (lambda (superclass)

 (lambda (message)

 (cond

 ((eq? message 'solve-mystery)

 “Scooby solves the mystery!”)

 ((eq? message 'snack)

 “Scooby snacks!”))

 (else (ask superclass message)

))))

> (define lassie (make-dog))
> (define scooby-doo (make-scooby
 (make-dog))
> (ask scooby-doo 'speak)
“woof”
> (ask scooby-doo 'solve-mystery)
“Scooby solves the mystery!”
> (ask scooby-doo 'snack)
“Scooby snacks!”

#42

You're a Mystery Machine!
(define make-dog

 (lambda (message)

 (cond ((eq? message 'speak)
“woof”)

 ((eq? message 'solve-mystery)

 “<dogs cannot solve mysteries!>”)

)))

(define make-scooby

 (lambda (superclass)

 (lambda (message)

 (cond

 ((eq? message 'solve-mystery)

 “Scooby solves the mystery!”)

 ((eq? message 'snack)

 “Scooby snacks!”))

 (else (ask superclass message)

> (define lassie (make-dog))
> (define scooby-doo (make-scooby
 (make-dog))
> (ask scooby-doo 'speak)
“woof”
> (ask scooby-doo 'solve-mystery)
“Scooby solves the mystery!”
> (ask scooby-doo 'snack)
“Scooby snacks!”

Inherit behavior ('speak)

Inherit and Override behavior ('solve-mystery)

New behavior ('snack)

#43

Object-Oriented Terminology
• An object is an entity that packages state and

procedures.
• The state variables that are part of an object

are called instance variables.
• The procedures that are part of an object are

called methods.
• We invoke (call) a method by sending the

object a message.
• A constructor is a procedure that creates new

objects (e.g., make-dog).
#44

Charge
• Start PS6 early

– You can turn in PS5 up to Friday (popular
demand), but the clock is ticking for PS6!

– PS6 is challenging
– Opportunity for creativity

• Start thinking about PS9 Project ideas
– If you want to do an “extra ambitious” project

convince me your idea is worthy before March
26 (ps7 and 8)/April 4 (ps8)

– Discuss ideas and look for partners on the forum

#45

Homework
• PS 5 due Friday

– Extension granted.

• PS 6 due Monday March 23rd
• Read GEB Chapters 2-4 and 6-9

