 One-Slide Summary g is in O(f) iff there exist positive constants c and n₀ such that g(n) ≤ cf(n) for all n ≥ n₀. If g is in O(f) we say that f is an upper bound for g. We use Omega Ω for lower bounds and Theta Θ for tight bounds. To prove that g is in O(f) you must find the constants c and n₀. We can add two numbers with electricity.
Administrivia
 Don't forget to turn in your fractal Separate form and button on adjudicator Late policy for PS3 Code about 10% per full day Reading In Chapter 6 of the Course Book ("Machines"), there is a running example about computing and implementing logic with a particular substance that you can pour. What was it? One word answer.
> (time (sort < (revintsto 100)))

