

Outline

- Sorting: timing and costs
- Big Oh: upper bound
- Big Omega: lower bound
- Big Theta: tight bound
- Time Permitting:
- Adding Two Numbers With Electricity

One-Slide Summary

- g is in $O(f)$ iff there exist positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.
- If g is in $O(f)$ we say that f is an upper bound for g .
- We use Omega Ω for lower bounds and Theta Θ for tight bounds.
- To prove that g is in $\mathrm{O}(\mathrm{f})$ you must find the constants c and n_{0}.
- We can add two numbers with electricity.

Administrivia

- Don't forget to turn in your fractal
- Separate form and button on adjudicator
- Late policy for PS3 Code
- about 10\% per full day
- Reading
- In Chapter 6 of the Course Book ("Machines"), there is a running example about computing and implementing logic with a particular substance that you can pour. What was it? One word answer.

Sorting Cost

-What grows?

$-n=$ the number of elements in lst

- How much work are the pieces?
find-best: work scales as n (increases by one) delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as n^{2}

Timing Sort

$>$ (time (sort < (revintsto 100))) cpu time: 20 real time: 20 gc time: 0
$>$ (time (sort < (revintsto 200)))
cpu time: 80 real time: 80 gc time: 0 $>$ (time (sort < (revintsto 400))) cpu time: 311 real time: 311 gc time: 0
$>$ (time (sort < (revintsto 800)))
cpu time: 1362 real time: 1362 gc time: 0
$>$ (time (sort < (revintsto 1600)))
cpu time: 6650 real time: 6650 gc time: 0

Timing Sort

Growth Notations

- $g \in O(f) \quad$ ("Big-Oh")
g grows no faster than $f \quad(f$ is upper bound)
$\cdot g \in \Theta(f) \quad$ ("Theta")
g grows as fast as f
(f is tight bound)
- $g \in \Omega(f) \quad$ ("Omega")
g grows no slower than $f \quad(f$ is lower bound)
Which one would we most like to know?

Sorting Cost

(define (sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (sort (delete Ist best) cf))))) (define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))
If we double the length of the list, the amount of work approximately quadruples: there are twice as many applications of find-best, and each one takes twice as long!

Meaning of O ("big Oh")

g is in $O(f)$ iff:

There are positive constants c and n_{0} such that
$g(n) \leq c f(n)$
for all $n \geq n_{0}$.

Examples

g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.

Is n in $O\left(n^{2}\right)$? Yes, $c=1$ and $n_{0}=1$ works.
Is $10 n$ in $O(n) ? \quad$ Yes, $c=.09$ and $n_{0}=1$ works.
Is n^{2} in $O(n) ? \quad$ No, no matter what c we pick, $c n^{2}>n$ for big enough $n(n>c)$

Ω ("Omega"): Lower Bound

g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$.
g is in $\Omega(f)$ iff there are positive constants c and n_{0} such that

$$
g(n) \geq c f(n)
$$

for all $n \geq n_{0}$.

Proof by Construction

- We can prove a "there exists an X with property Y " theorem, but showing an X that has property Y
- $O(f)$ means "there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$
- So, to prove g is in $O(f)$ we need to find c and n_{0} and show that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

Liberal Arts Trivia: Archaeology

- In archaeology, this term is used to describe the exposure, processing and recording of archaeological remains. A related subconcept is stratification: relationships exist between different events in the same location or context. Sedimentary layers are deposited in a time sequence, with the oldest on the bottom and the youngest on top.

Proof Techniques

- Theorem:

There exists a polygon with four sides.

- Proof:
 It has four sides. QED.

Dis-Proof by Construction

- To prove g is not in $O(f)$:
- $O(f)$ means: there are positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$
- So, to prove g is not in $O(f)$ we need to find a way given any c and n_{0}, to find an n $\geq n_{0}$ such that $g(n)>c f(n)$.

Liberal Arts Trivia: Creative Writing

- This technique is one of the four rhetorical modes of discourse, along with argumentation, description and narration. Its purpose is to inform, explain, analyze or define. When done poorly, it is sometimes referred to as a "information dump" or "plot dump".

Growth Notations

- $g \in O(f) \quad$ ("Big-Oh")
g grows no faster than f (upper bound)
- $g \in \Theta(f) \quad$ ("Theta")
g grows as fast as f (tight bound)
- $g \in \Omega(f) \quad$ ("Omega")
g grows no slower than f (lower bound)

The Sets $O(f)$ and $\Omega(f)$

O and Ω
Examples

- n is in $\Omega(n)$
- ?
- $10 n$ is in $\Omega(n)$
- ?
- Is n^{2} in $\Omega(n)$? - ?

> | $\begin{array}{l}g \text { is in } O(f) \text { iff there are positive } \\ \text { constants } c \text { and } n_{0} \text { such that } g(n) \\ \leq c f(n) \text { for all } n \geq n_{0} .\end{array}$ |
| :--- |
| g is in $\Omega(f)$ iff there are positive |
| constants c and n_{0} such that $g(n)$ |
| $\geq c f(n)$ for all $n \geq n_{0}$. |
| - n is in $O(n)$ |
| - ? |
| - $10 n$ is in $O(n)$ |
| - ? |
| - n^{2} is not in $O(n)$ |
| - ? |

O and Ω Examples

- n is in $\Omega(n)$
- Yes, pick $c=1$
- $10 n$ is in $\Omega(n)$
- Yes, pick $c=1$
- Is n^{2} in $\Omega(n)$?
- Yes! (pick $c=1$)
g is in $O(f)$ iff there are positive constants c and n_{0} such that $g(n)$ $\leq c f(n)$ for all $n \geq n_{0}$.
g is in $\Omega(f)$ iff there are positive constants c and n_{0} such that $g(n)$ $\geq c f(n)$ for all $n \geq n_{0}$.
- n is in $O(n)$
- Yes, pick $c=1$
- $10 n$ is in $O(n)$
- Yes, pick $c=10$
- n^{2} is not in $O(n)$
- Pick $n>c$

Example

- Is n in $\Omega\left(n^{2}\right)$?
$n \geq c n^{2} \quad$ for all $n \geq n_{0}$
$1 \geq c n \quad$ for all $n \geq n_{0}$
No matter what c is, I can make this false by using $n=(1 / c+1)$
> g is in $\Omega(f)$ iff there are positive constants c and n_{0} such that $g(n)$ $\geq c f(n)$ for all $n \geq n_{0}$.

Θ ("Theta"): Tight Bound

The Sets $O(f), \Omega(f)$, and $\Theta(f)$

Θ Examples

- Is $10 n$ in $\Theta(n)$?
- Yes, since $10 n$ is $\Omega(n)$ and $10 n$ is in $O(n)$
- Doesn't matter that you choose different c values for each part; they are independent
- Is n^{2} in $\Theta(n)$?
- No, since n^{2} is not in $O(n)$
- Is n in $\Theta\left(n^{2}\right)$?
- No, since n^{2} is not in $\Omega(n)$

Θ Examples

- Is $10 n$ in $\Theta(n)$?
- Is n^{2} in $\Theta(n)$?
- Is n in $\Theta\left(n^{2}\right)$?

Recall: Sorting Cost

-What grows?

$-n=$ the number of elements in lst

- How much work are the pieces?
find-best: work scales as n (increases by one)
delete: work scales as n (increases by one)
- How many times does sort evaluate find-best and delete? n
- Total cost: scales as n^{2}

Sorting Cost

(define (sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (sort (delete lst best) cf)))))
(define (find-best Ist cf)
(if ($=1$ (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cff)))
If we double the length of the list, the amount of work approximately quadruples: there are twice as many applications of find-best, and each one takes twice as long.

The running time of this sort procedure is in $\Theta\left(n^{2}\right)$

Timing Sort

Is our sort good enough?

Takes over 1 second to sort 1000 -length list. How long would it take to sort 1 million items?

```
1s = time to sort 1000
4s ~ time to sort }200
1 M is 1000 * 1000
Sorting time is \(n^{2}\)
so, sorting 1000 times as many items will take
\(1000^{2}\) times as long \(=1\) million seconds \(\sim 11\) days
```

Note: there are 800 Million VISA cards in circulation.

Eyes
by John Devo and Eric Montgomery

Which of these is true?

- Our sort procedure is too slow for VISA because its running time is in $O\left(n^{2}\right)$
- Our sort procedure is too slow for VISA because its running time is in $\Omega\left(n^{2}\right)$
- Our sort procedure is too slow for VISA because its running time is in $\Theta\left(n^{2}\right)$

Which of these is true?

- Our sort procedure is too slow for ViSA because its running time is in $\theta\left(n^{2}\right)$
- Our sort procedure is too slow for VISA because its running time is in $\Omega\left(n^{2}\right)$
- Our sort procedure is too slow for VISA because its running time is in $\Theta\left(n^{2}\right)$

Knowing a running time is in $O(f)$ tells you the running time is not worse than f. This can only be good news. It doesn't tell you anything about how bad it is. (Lots of people and books get this wrong.)

Liberal Arts Trivia: Dance

- This four wall line dance was created in 1976 by American dancer Ric Silver. It was popularized by Marcia Griffiths and remains a perennial wedding favorite. Steps: 1-4 grapevine right (tap and clap on 4), 5-8 grapevine left (tap and clap on 8), 9-12 walk back (tap and clap on 12), etc. The lyrics include "I'll teach you the ..."

Liberal Arts Trivia: Medieval Studies

- This son of Pippin the Short was King of the Franks from 768 to his death and is known as the "father of Europe": his empire united most of Western Europe for the first time since the Romans. His rule is associated with the Carolingian Renaissance, a revival of art, religion and culture. The word for king in various Slavic languages (e.g., Russian, Plish, Czech) was coined after his name.

How To Add Two Numbers With Electricity

The Transistor

- With transistors it is possible to make two switches: normal control, and inverted control. - The black dot means inverted.
- Exhaustive Listing:

SCO
111
100
010
000

The Notty Transistor

- One Trick: what if we wire the source of an inverted control switch up to a battery that is always on?
- Exhaustive Listing:

What logical operation is this?
outp

Adding Numbers!

- $1+0+1=10$

Adding Numbers!

- $1+0+1=10$

Adding Numbers!

- $1+0+1=10$

Electronic Computers

- By using semiconductors
- which work using physical properties of silicon
- We can build transistors
- which are like switches or faucets
- To manipulate electrical voltages
- which represent bits
- Through logical gates
- which encode and, or, not, etc.
- To add (and subtract, etc.) numbers!
- In O(1) time. This is the basis of our cost model.

Adding Numbers!

- $1+0+1=10$

Homework

- Read Couse Book Chp 7
- You've already done so!
- Problem Set 3 Midnight
- Problem Set 4 Out
- Start now!
- Due Next Wednesday
- It's for Exam Prep!

The Mask by Zachary Pruckowski,

