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ABSTRACT
In 1996, Gil and Lorenz proposed programming language
constructs for specifying environmental acquisition in ad-
dition to inheritance acquisition for objects. They noticed
that in many programs, objects are arranged in containment
hierarchies and need to obtain information from their con-
tainer objects. Therefore, if languages allowed programmers
to specify such relationships directly, type systems and run-
time environments could enforce the invariants that make
these programming patterns work.

In this paper, we present a formal version of environmen-
tal acquisition for class-based languages. Specifically, we
introduce an extension of the ClassicJava model with con-
structs for environmental acquisition of fields and methods,
a type system for the model, a reduction semantics, and
a type soundness proof. We also discuss how to scale the
model to a full-scale Java-like programming language.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—classes and objects; D.1.5 [Programming
Techniques]: Object-oriented Programming; D.2.3 [Soft-
ware Engineering]: Coding Tools and Techniques—object-
oriented programming

General Terms
Languages, Design

Keywords
environmental acquisition, object-oriented languages, object
containment, object composition

1. INTRODUCTION
Programs often manipulate hierarchical containers or tree-

shaped forms of data. For example, a PLT Scheme [5] pro-
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gram that uses the MrEd library [6] for implementing a
graphical user interface nests panels inside of a window to ar-
range the basic GUI widgets. Or, a Java program that uses
the XML library creates a tree representation from some
text that it reads.

Indeed, the idea of using hierarchical data representations
of this kind is so standard that the collection of object-
oriented (program) design patterns [10] contains special pat-
terns, like the composite and interpreter patterns, for de-
signing an appropriate set of classes. As many people have
observed [12, 15], however, patterns almost naturally sug-
gest new constructs for programming languages. Specifi-
cally, if a language codifies a pattern with a new construct,
the compiler and the run-time system can enforce the pat-
tern’s programming invariants or, alternatively, can signal
violations as soon as they recognize them.

Consider the case of hierarchical data. Typically, the de-
sign of hierarchical data implies that each item has a unique
container, if it has one at all. Using the equivalent terminol-
ogy of nested containers, an item is inside of (at most) one
container, which in turn may be inside of another container
and so on. Based on this property, programs tend to com-
pute properties of an item that are a function of the item’s
uniquely determined environment. That is, items acquire
properties from their environments and compute with them.
Of course, this only works if the program establishes, main-
tains, and uses the hierarchy properly at all times, includ-
ing so-called “friend pointers” from an item to its container
(also known as “two-way links” in the UML community [8,
p. 155]).

Gil and Lorenz [11] recognized this problem of environ-
mental acquisition and proposed constructs for specifying
such relationships directly within programs.1 Their proposal
was informal; it neither specified a formal type system for
environmental acquisition nor stated a soundness theorem
for a specific model. Since then, environmental acquisition
has found its way into Python [22, 9] as a part of the Zope
project [16]. Also, the second author has used environmen-
tal acquisition for a systems administration project where
computers, switches, and ethernet cards acquire policies and
other network information from their containers [17].

In this paper, we resume and continue this language design
experiment. Specifically, we present a typed version of envi-

1As Gil and Lorenz point out, an object’s environment may in-
corporate many different kinds of related objects. We restrict
ourselves, as they do, to the environment provided by an object’s
containers.
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class JComponent extends Container // ...
{
// ...
public JRootPane getRootPane() {
return SwingUtilities.getRootPane(this);

}
// ...

}

class SwingUtilities // ...
{
// ...
public static JRootPane getRootPane(Component c) {
if (c instanceof RootPaneContainer) {
return ((RootPaneContainer)c).getRootPane();

}
for( ; c != null; c = c.getParent()) {
if (c instanceof JRootPane) {
return (JRootPane)c;

}
}
return null;

}
// ...

}

Code from Java’s Swing API [20].

Figure 1: root panes in Swing

ronmental acquisition for a class-based object-oriented pro-
gramming language. Our goal is to show language designers
how environmental acquisition helps programmers; what it
takes to type constructs for environmental acquisition; and
when the run-time system needs to check the invariants for
acquisition relationships. A formal model, based on Clas-
sicJava [7], provides the framework in which we discuss the
design decisions and in which we can prove a type soundness
theorem. Finally, we use the model to formulate a challenge
for the designers of type systems concerning the elimination
of run-time checks.

The paper consists of seven sections. The next section
introduces environmental acquisition with concrete exam-
ples. Then the third section briefly recalls those elements
of ClassicJava that matter for this paper. The fourth sec-
tion is dedicated to Jacques, an extension of ClassicJava
with constructs for specifying the environmental acquisition
of fields and methods, its type system, and its formal seman-
tics. In the fifth section we discuss several decisions concern-
ing the design of Jacques. The sixth section sketches how to
scale our model to a full object-oriented language. The sev-
enth section sketches related efforts, their limitations, and
how we might incorporate their methods into future versions
of Jacques. The final section suggests some future work,
especially on an improved type system for keeping track of
acquisitions.

2. MOTIVATING EXAMPLES
As environmental acquisition relies on an object contain-

ment hierarchy, it has a strong connection with design pat-
terns where such hierarchies play central roles, particularly
the composite pattern and its close relative, the interpreter
pattern. The focus of these patterns is often propagating
information towards the root of an object tree. Acquisition

contains Fund funds

contains Fund funds

TaxInfo taxPolicy

contained Account, Fund

int fundID

int balance

acquire TaxInfo taxPolicy

MutualFund

contained Account, Fund

FundAccount

TaxInfo taxPolicy

FundGroup

Figure 2: acquisition example: investment accounts

becomes relevant if the application must propagate informa-
tion away from the root.

For example, consider GUI development toolkits, which
are typically implemented with the composite pattern. In
Java’s Swing toolkit [21], for instance, all graphical com-
ponents are subclasses of JComponent; several components
like JPanel may contain other components. Every operating-
system-level window in a Swing program has a single root
pane; this pane contains the window’s menu bar and other
capabilities. Therefore, components that need to access the
menu bar must have access to their containing root pane.
Currently, the JComponent.getRootPane method retrieves
the root pane by chasing explicit pointers up the panel con-
tainment hierarchy, as shown in figure 1. As GUI compo-
nents are added, destroyed, and moved, the library main-
tains these pointers. With environmental acquisition, each
individual component could simply acquire a reference to
the root pane from its container, avoiding the need to write
error-prone pointer-management code directly and instead
leaving that responsibility to the run-time system.

Following Gamma et al, we take our next example of ac-
quisition in the composite pattern from the financial sector.
See figure 2 for the class diagram. The Account class repre-
sents an individual’s account with a mutual fund firm; each
account contains several Fund instances. It is frequently the
case that an investor may have several types of funds within
the same account; some funds may be standard investments,
while others may be part of an IRA. To keep these funds
separate for tax purposes, it is convenient to group multi-
ple funds into a FundGroup instance. Now, transactions on a
particular fund must take the fund’s tax policy into account.
With environmental acquisition, we simply declare the pol-
icy for the account as a whole, allow fund groups to override
that policy for their funds, and have each fund acquire the
policy from its nearest container.

For a final example, extracted from DrScheme [4], consider
a class-writing wizard for use in a program development en-
vironment; see figure 3 for a UML diagram of the relevant
classes. This wizard allows the user to define a new class or
set of classes by specifying their properties graphically; the
produce method in the ClassUnionWizard class generates the
corresponding declarations in the target programming lan-
guage. The system allows the user to define classes in several
different manners. For example, the ClassInfo wizard con-
structs a single class, and the UnionInfo wizard constructs a
sum-of-products type, as seen in the interpreter pattern.
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HorizontalPanel

...
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ClassInfo

Figure 3: acquisition example: class wizard

Control interface

Work area

Error window

Figure 4: class wizard dialog

Each dialog contains three main visual components: a
control interface at the top, an error window at the bottom,
and a large work area in the center that is specialized to
the specific wizard; see figure 4. For example, the UnionInfo
wizard contains a work area with one panel for each variant
of the data type being developed. Since these variant panels
are complicated in their own right, we have not included this
code in UnionInfo but removed it to the VariantPanel class,
instances of which are contained in the main dialog box.

A wizard typically cannot detect all of the errors in a de-
sign until it attempts to emit code via the produce method.
In the UnionInfo class, this method simply invokes the same
method on each of its VariantPanels. If one of those de-
tects an error, it must report it by communicating the error
message up to the main dialog box for display in its error
panel. Since, however, VariantPanel inherits from Horizon-
talPanel and not from ClassUnionWizard, it must use some
other mechanism to access the errorMessage method. In
other words, it must acquire this method from its containers.

This acquisition link also makes it easier to extend Union-
Info’s behavior later. In particular, if we wanted to subclass
this to direct all error reports to a log file on disk, in addition
to sending them to the window, we could simply place the
VariantPanel objects into the extended UnionInfo; the pan-

P � defn∗ e
defn � class c extends c �field∗ meth∗�
field � t fd
meth � t md�arg∗� �e�
arg � t var
e � new c � var � null � e : c .fd � e : c .fd = e

� e.md�e∗� � super � this : c.md�e∗�
� cast t e � let var = e in e

var � a variable name or this
c � a class name or Object
fd � a field name
md � a method name
t � c (a type name)

Figure 5: ClassicJava syntax

els would acquire the extended errorMessage method, and
we would achieve the desired behavior with no changes to
VariantPanel.

Without acquisition, we could achieve the same behavior
through either of two strategies. First (and currently), we
could wrap the errorMessage method in a Scheme closure and
pass this as an argument to the VariantPanel constructor;
this panel object could then simply invoke the closure to
report an error. Second, we could manage the container
pointer manually, and the VariantPanel object could chase
pointers to find the errorMessage method.

3. CLASSIC JAVA
ClassicJava [7] is a formal model of the sequential core

of Java [13] that includes inheritance, method overriding,
and field mutation; the model could easily apply to simi-
lar OO languages, like C# [3] or Eiffel [19]. We summarize
ClassicJava in this section and refer the reader to the orig-
inal paper for the full details.

Figure 5 specifies the syntax for ClassicJava programs.
The underlined portions of the syntax are added by the type
checking and elaboration phase in order to make certain
context-sensitive details available to the operational seman-
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tics. For instance, evaluating a super expression requires
knowledge of the location of the expression in the original
program in order to perform method lookup correctly. Sim-
ilarly, field accesses must know the static type of the object
whose field is being accessed in order to resolve shadowed
fields correctly. The underlined annotations provide all nec-
essary information for these cases.

Figure 6 describes the six type judgments necessary to
define ClassicJava’s static semantics; we refer the reader
to the original paper for the definition of these judgments.
The ClassicJava semantics also requires several additional
relations; those that are relevant to our work are defined in
figure 7. The dynamic semantics (a small-step operational
semantics with evaluation contexts) requires access to the
program’s class definitions P and an explicit store S. Fi-
nally, we represent an instance as an ordered pair �c,F �,
where c is the object’s class tag and F is a finite map from
tagged field names (i.e., c.fd) to values.

ClassicJava satisfies a type soundness theorem:

Theorem 1 (Type Soundness for ClassicJava)
If �p P �� P � : t and P � � defn1 . . . defnn e, then either

� P � � �e,�� ��∗ �obj ,S� and S�obj 	 � �t �,F � and
t � 
P t; or

� P � � �e,�� ��∗ �null,S�; or

� P � � �e,�� ��∗ �error: bad cast,S�; or

� P � � �e,�� ��∗ �error: dereferenced null,S�; or

� P � � �e,�� �.

4. JACQUES
Jacques is an extension to ClassicJava. It supports en-

vironmental acquisition of both fields and methods. In this
section, we first describe Jacques’s syntax, type system,
and operational semantics; then we state and sketch a proof
of type soundness for Jacques. In the following section, we
discuss our design choices and how the formal model helped
making them.

To describe object containment in Jacques programs, we
use two directed graphs: the class containment graph and
the object containment graph. The class containment graph
for a program P contains one node for each class defined
in P ; there is an edge from class c1 to class c2 if and only
if c1’s declaration indicates that it may be contained in c2

(section 4.1). The class containment graph is orthogonal
to the class inheritance tree, and it is a static property of
program P .

In contrast, the object containment graph describes the
state of the program at a particular point in its execution.
This graph (section 4.4) contains one node for each object
instance in the program’s store, and an edge from object x
to object y exactly when x is contained in y.

Finally, while Jacques supports most of ClassicJava’s
capabilities, we disallow field shadowing, to simplify the de-
scription of field acquisition. In section 6, we discuss the
issue of adding field shadowing and other features of Java
to Jacques.

4.1 Syntax
To support acquisition along containment links between

objects, we must have some way to distinguish between

defn � class c extends c contained c∗ �
field∗
contains field∗
acquires field∗
meth∗
acquires acqmeth∗�

acqmeth � t md�t∗�

Figure 8: Jacques syntax extensions

those links that represent containment in the sense of a con-
tainment hierarchy and those that do not. Therefore, in
Jacques, the programmer must explicitly tag those fields
that represent a containment relationship. Jacques also
requires explicit acquisition, i.e., classes must explicitly de-
clare the fields they acquire from their environment. Fig-
ure 8 extends ClassicJava’s class definition syntax with
these annotations.

The contains and acquires keywords divide the field defi-
nitions into three groups. Consider the class definition

class A � � � 
X x
contains Y y
acquires Z z � � �

�

and let a be an instance of A. Fields in the first two groups
(here, x and y) are parts of a, and fields in the last group
(z) are not directly in a but are rather acquired from a’s
context. Further, only objects in fields in the second group
(here, y) are considered to be contained in a, and therefore
only they may acquire fields from a.

Similarly, the acquires keyword splits the method defini-
tions into two groups. Methods in the first group behave
as in ClassicJava. Methods in the second group, on the
other hand, are acquired from the object’s context; there-
fore, their definitions need not include anything beyond their
signatures.

Finally, the (possibly empty) sequence of classes specified
after the contained keyword places restrictions on the types
of objects that may contain objects of the class being de-
fined. In particular, if an instance a of class c is contained
in anything, the container’s type must be a subtype of one of
the classes specified in c’s container list. As a consequence,
if this list is empty, then a may not be contained (in the
spirit of environmental acquisition) in any object.

4.2 Types
Both the static and dynamic semantics must be able to

distinguish between the three kinds of fields and the two
kinds of methods. Therefore, we adjust ClassicJava’s ab-
stract representation of fields and methods. A field defini-
tion is now a triple �t , fd , s�, where t is the field’s type, fd is
its name, and s is a tag indicating the kind of field; s is one
of normal, contained, or acquired.

Similarly, a method definition is a 5-tuple �md , T, V, e, s�,
where md , T , V , and e are as before, and s is a tag indicating
where the method originated; s may be either normal or
acquired. (The third and fourth elements of the tuple are
meaningless for acquired methods, but we leave them in to
simplify the definition of, e.g., ∈P .)
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�p P �� P � : t program P elaborates to P � with type t
P �d defn �� defn � class definition defn elaborates to defn �

P , t �m meth �� meth � method meth in class t elaborates to meth �

P , Γ �e e �� e � : t e elaborates to e � with type t in Γ
P , Γ �s e �� e � : t e elaborates to e � and has type t using subsumption in Γ

P �t t type t exists

Figure 6: ClassicJava type judgments

≺P immediate subclass
c ≺P c� �� class c extends c� �	 	 	 � is in P


P subclass

P is defined to be the reflexive-transitive closure of ≺P

∈∈P field is declared in a class
�c.fd , t� ∈∈P c �� class c 	 	 	 �	 	 	 t fd 	 	 	 � is in P

∈∈P method is declared in a class
�md , �t1 . . . tn  t�, �var1 . . . varn�, e� ∈∈P c �� class c 	 	 	 �	 	 	 t md�t1 var1 . . . tn varn� �e� 	 	 	 � is in P

∈P field is contained in a class
�c�.fd , t� ∈P c �� �c�.fd , t� ∈∈P c� and c� � min�c� � c 
P c� and �t � . �c�.fd , t �� ∈∈P c��

∈P method is contained in a class
�md , T, V, e� ∈P c �� �md , T, V, e� ∈∈P c� and c� � min�c� � c 
P c� and �e�, V � . �md , T, V �, e �� ∈P c��

Figure 7: ClassicJava relations

Finally, we also use an adjusted instance representation:
�c, ctnr ,F � where c is the class tag, ctnr is a (possibly null)
reference to the instance’s container, and F is a finite map
from field names to values. We also define three selector
functions: classTag , ctnr , and fields map an instance triple
to its class tag, container reference, and field function, re-
spectively.

Jacques’s semantics requires many of the relations and
predicates defined in figure 7, with appropriate modifica-
tions to several, including ∈∈P and ∈P . The additional nec-
essary predicates are straightforward; their definitions are
provided below and in figure 9.

The predicate canAcqP�c, �t , fd , acquired�	 determines if it
is safe for class c to acquire field �t , fd , s�. This acquisition is
safe if the class containment graph implies that, for all pos-
sible environments for instances of c, the nearest enclosing
class that provides the field fd provides it with a compatible
type. Formally, we define canAcqP�c, �t , fd , s�	 to be true if
and only if every unsafe path that starts with c in the class
containment graph has a safe prefix. An unsafe path is one
that ends in a class c� such that

� �t�, fd , s�� ∈P c�, and

� t� �P t .

A safe path is one that ends in a class c� such that

� �t �, fd , s�� ∈P c�, and

� s� � acquired, and

� t � 
P t .

In other words, no traversal of the class containment graph
finds a field of the desired name and an incompatible type
before it finds a field with a compatible type. Note that
we allow the existence of paths that never find a field of

the desired name, and we even allow the absence of any
paths that find the desired field. Forbidding these conditions
would not strengthen the type system: even if all paths from
a class c reach the field, we must still check at run-time for
the possibility that an object of type c has a null container.

Similarly, the predicate canAcqMethP checks whether it is
safe for class c to acquire a method md ; it differs only in the
type compatibility requirements. Formally, canAcqMethP�c,
�md , �t1 . . . tn � t	, V, e, s�	 is true if and only if every un-
safe path that starts with c in the class containment graph
has a safe prefix. Here, an unsafe path is one that ends in
a class c� such that �md , �t�1 . . . t�m � t�	, V �, e�, s�� ∈P c�

and one of the following is true:

� m � n, or

� t� �P t , or

� m � n and for some i � �1, n�, t i �P t�i .

A safe path is one that ends in a class c� where

� �md , �t �1 . . . t �n � t �	, V �, e �, s�� ∈P c�, and

� s� � acquired, and

� t � 
P t , and

� t i 
P t �i for all i � �1, n�.

With these relations on the class graph, we can define the
type elaboration rules for Jacques; figure 10 specifies the
necessary changes to ClassicJava’s rules. In addition to the
rules shown, there are straightforward variations of Clas-
sicJava’s Get, Call, and Super to account for the change
in field and method representations. Also, because we no
longer support field shadowing, we add ClassFieldsOK �P 	
as an antecedent to the Progj rule, and neither the Getj
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ClassFieldsOK �P� no field definition shadows a field defined in a superclass
��t1, fd , s1� ∈∈P c1 and �t2, fd , s2� ∈∈P c2 and c1 � c2� �� c1 �P c2

containersP �c� set of all possible containers of instances of class c
containersP �Object� � �
containersP �c� � �c1, . . . , cn� where class c 	 	 	 contained c1 . . . cn � 	 	 	 � is in P

acqFieldsP �c� set of all acquired fields in class c
acqFieldsP �Object� � �
acqFieldsP �c� � acqFieldsP �c

�� � ��t , fd , acquired� � �t, fd , acquired� ∈∈P c�
where class c extends c� 	 	 	 � 	 	 	 � is in P

acqMethodsP �c� set of all acquired methods in class c
acqMethodsP �Object� � �
acqMethodsP �c� � ��md , T, V, e, acquired� � �md , T, V, e, acquired� ∈P c�

where class c 	 	 	 � 	 	 	 � is in P
�P class may be contained

c1 �P c2 �� there exists c� � containersP �c1� such that c2 
P c�

Figure 9: Jacques relations

Defnj

P �t tj for all j � �1, m� P �t cj for all j � �1, n� P , c �m methi �� meth �i for all i � �1, p�
�f � acqFieldsP �c	 . canAcqP�c, f	 �m � acqMethodsP�c	 . canAcqMethP�c, m	

containersP�c
�	 � containersP �c	 t i �P c for all i � �k � 1, ��

P �d class c extends c� contained c1, . . . , cn

t1 fd1 . . . tk fdk

contains tk�1 fdk�1 . . . t� fd�

acquires t��1 fd ��1 . . . tm fdm

meth1 . . .methp

acquires acqmeth1 . . . acqmethq�

�� class c extends c� contained c1, . . . , cn

t1 fd1 . . . tk fdk

contains tk�1 fdk�1 . . . t� fd �

acquires t��1 fd ��1 . . . tm fdm

meth �1 . . . meth �p
acquires acqmeth1 . . . acqmethq�

Setj

P , Γ �s e1 �� e �1 : t � �t , fd , s� ∈P t �

s � acquired P , Γ �s e2 �� e2 : t

P , Γ �e e1.fd = e2 �� e �1.fd = e �2 : t

Figure 10: Jacques type elaboration rules

nor the Setj rule annotates field reference or assignment ex-
pressions. Further, Setj prohibits assignments to acquired
fields; see section 5.5 for the rationale for this restriction.

The Defnj rule contains most of the changes that support
acquisition. First, it verifies that class c’s environments pro-
vide the necessary fields and methods with compatible types.
This indirectly requires that if c or any of its superclasses
acquire any fields or methods, then c must have at least one
container. Second, c’s containers must be a superset of c’s
superclass’s containers, to preserve behavioral subtyping.2

Third, it must ensure that all of the classes that can be in
c’s contained fields allow themselves to be contained in c,
as required by the soundness proof. The Defnj rule could
also verify that class A can contain instances of class B if
and only if B can be contained in A. While warnings of
violations of this invariant are likely to be useful to the pro-
grammer, they are not required for type soundness.

2As we move down the inheritance hierarchy, the set of possi-
ble containers must increase monotonically. However, a subclass
may also add new acquired fields or methods; this further con-
strains the set of possible containers. There is no inconsistency
hidden here; it simply creates a trade-off that the programmer
must consider during the design of class hierarchies.

4.3 Semantics
Jacques’s semantics is like that of ClassicJava, with

some modifications and additions; the changes are defined
in figure 11, with additional supplementary functions de-
fined in figure 12. In particular, many of these rules per-
form the additional run-time checks necessary to ensure that
acquisition is well-defined. In particular, the agetj , acallj ,
and asuperj rules ensure that references to acquired fields
or methods happen when the object is in a sufficiently rich
environment; if not, the rules raise an “incomplete context”
exception. Similarly, the ct-setj rule, for assignment to a
contained field, ensures that the field’s new contents are not
already contained elsewhere and that the assignment does
not create an acquisition cycle. If either condition fails, the
rules raise an “already contained” or “container cycle” ex-
ception as appropriate.

4.4 Jacques Soundness
To study the properties of Jacques’s type system and se-

mantics, we have implemented the model in PLT Redex [18],
a system for debugging reduction systems. This implemen-
tation does not yet support either method acquisition or
field assignment, but it raises our confidence that the proof
of the following type-soundness theorem is correct.
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e � . . . � obj
v � obj � null
E � [ ] � E.fd � E.fd = e � v .fd = E � E.md�e . . .� � v .md�v . . . E e . . .�

� super � v : c.md�v . . . E e . . .� � cast t E � let var = E in e

P � �E[new c],S� � �E[obj ],S�obj � �c, null,F ��� [newj ]
where obj � dom�S� and F � �fd � null � �t, fd , s� ∈P c and s � acquired�

P � �E[obj .fd],S� � �E[F�fd�],S� [getj ]
where F � fields�S�obj �� and fd � dom�F�

P � �E[obj .fd],S� � �E[getAcqFieldP �S, obj , fd�],S� [agetj ]
where �t , fd , acquired� ∈P classTag�S�obj ��
and getAcqFieldP �S, obj , fd� � �

P � �E[obj .fd],S� � �error: incomplete context,S� [xagetj ]
where �t , fd , acquired� ∈P classTag�S�obj ��
and getAcqFieldP �S, obj , fd� � �

P � �E[obj .fd = v ],S� � �E[v ],updateField�S, obj , fd , v�� [setj ]
where �t , fd , normal� ∈P classTag�S�obj ��

P � �E[obj .fd = null],S� � �E[null], updateCtdField�S, obj , fd , null�� [n-ct-setj ]
where �t , fd , contained� ∈P classTag�S�obj ��

P � �E[obj .fd = v ],S� � �error: already contained,S� [x-ct-setj ]
where �t , fd , contained� ∈P classTag�S�obj ��
and v � dom�S� and ctnr�S�v�� � null

P � �E[obj .fd = v ],S� � �error: container cycle,S� [cycle-setj ]
where �t , fd , contained� ∈P classTag�S�obj ��
and v � dom�S� and canReachP �S, obj , v�

P � �E[obj .fd = v ],S� � �E[v ],updateCtdField�S, obj , fd , v�� [ct-setj ]
where v � dom�S� and �t, fd , contained� ∈P classTag�S�obj ��
and ctnr�S�v�� � null and �canReachP �S, obj , v�

P � �E[obj .md�v1 . . . vn�],S� � �E[eb�obj
��this, v1�var1, . . . , vn�varn�],S� [acallj ]

where �md , T, V, e, acquired� ∈P classTag�S�obj ��
and �obj �, eb� � getAcqMethodP �S, obj , md�

P � �E[obj .md�v1 . . . vn�],S� � �error: incomplete context,S� [xacallj ]
where �md , T, V, e, acquired� ∈P classTag�S�obj ��
and getAcqMethodP �S, obj , md� � �

P � �E[super � obj : c�.md�v1 . . . vn�],S� � �E[e�obj �this, v1�var1, . . . , vn�varn�],S� [superj ]
where �md , T, �var1, . . . , varn�, e, normal� ∈P c�

P � �E[super � obj : c�.md�v1 . . . vn�],S� � �E[e�obj ��this, v1�var1, . . . , vn�varn�],S� [asuperj ]
where �md , T, , , acquired� ∈P c� and �obj �, e� � getAcqMethodP �S, obj , md�

P � �E[super � obj : c�.md�v1 . . . vn�],S� � �error: incomplete context,S� [xasuperj ]
where �md , T, , , acquired� ∈P c� and getAcqMethodP �S, obj ,md� � �

P � �E[cast t � obj ],S� � �E[obj ],S� [cast]
where S�obj � � �c, ctnr ,F � and c 
P t �

P � �E[let var = v in e],S� � �E[e�v�var�],S� [let]

P � �E[cast t � obj ],S� � �error: bad cast,S� [xcast]
where S�obj � � �c, ctnr ,F � and c �P t �

P � �E[cast t � null],S� � �error: dereferenced null,S� [ncast]
P � �E[null.fd ],S� � �error: dereferenced null,S� [nget]
P � �E[null.fd = v ],S� � �error: dereferenced null,S� [nset]
P � �E[null.md�v1 . . . vn�],S� � �error: dereferenced null,S� [ncall ]

Figure 11: Jacques operational semantics
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getAcqFieldP �S, null, fd� � �

getAcqFieldP �S, obj , fd� �

� F�fd� if fd � dom�F�
getAcqFieldP �S, ctnr , fd� otherwise

where �c, ctnr ,F � � S�obj �

getAcqMethodP �S, null, fd� � �

getAcqMethodP �S, obj , fd� �

�
�obj, eb� if �md , T, V, eb, normal� ∈P classTag�S�obj ��
getAcqMethodP �S, ctnr , md� otherwise

where ctnr � ctnr�S�obj ��

updateField�S, obj , fd , v� � S�obj � �c, ctnr ,F�fd � v���
where �c, ctnr ,F � � S�obj �

updateCtdField�S, obj , fd , v� � updateField�S2, obj , fd , v�
where �c, ctnr ,F � � S�obj � and

S1 � updateContainer�S,F�fd�, null� and
S2 � updateContainer�S1, v , obj �

updateContainer�S, obj , ctnr� �

��
�

S if obj � null
S�obj � �c, ctnr ,F �� otherwise

where �c, ,F � � S�obj �

canReachP �S, obj , v� �� obj � v or �ctnr � null and canReachP �S, ctnr , v��
where ctnr � ctnr�S�obj ��

Figure 12: Jacques supplementary functions

Theorem 2 (Type Soundness for Jacques)
If �p P �� P � : t and P � � defn1 . . . defnn e, then either

� P � � �e,�� �; or

� P � � �e,�� ��∗ �obj ,S� and classTag�S�obj 		 
P t ;
or

� P � � �e,�� ��∗ �null,S�; or

� P � � �e,�� ��∗ �error: bad cast,S�; or

� P � � �e,�� ��∗ �error: dereferenced null,S�;
or

� P � � �e,�� ��∗ �error: incomplete context,S�; or

� P � � �e,�� ��∗ �error: already contained,S�; or

� P � � �e,�� ��∗ �error: container cycle,S�.

A comparison of theorem 1 and theorem 2 indicates that
Jacques can throw additional exceptions that do not occur
in ClassicJava programs. The last three exceptions are
forced upon us by acquisition, and we cannot avoid them
without a complex analysis, a more sophisticated type sys-
tem, or different linguistic mechanisms. Put differently, we
have succeeded in making acquisition just as safe as ML,
as many errors can be caught statically, but some run-time
checks (and exceptions) remain necessary.

The soundness proof follows the standard method [23] as
applied to ClassicJava [7]. In addition to the subject reduc-
tion and uniform evaluation lemmas, we also require some
definitions and supporting lemmas beyond those used in the
ClassicJava soundness proof; they are stated below.

Definition 1 (Object Containment)
We write P ,S � obj 1 � obj 2 to indicate that obj 1 contains
obj 2 in store S and program P . Formally:

P ,S � obj 1 � obj 2 ��
S�obj 1	 � �c, ctnr ,F � and F�fd	 � obj 2

for some fd such that �c�, fd , contained� ∈P c.

Definition 2 (Object Containment Graph)
For a given store S, we construct a directed graph GS , called
the object containment graph, as follows:

GS � �V,E	

where

V � rng�S	 and E � �x, y� � V 2 � ctnr�x	 � y�.

In other words, there is a node in GS for each object in S,
and an edge from each node to its container.

Next we need to adapt the environment-store consistency
relation from the proof of theorem 1 to the new context.

Definition 3 (Environment-Store Consistency)
We write P , Γ �σ S to indicate that the type environment Γ
and the store S are consistent with one another, given the
program P . Formally:

P , Γ �σ S ��
obj � dom�Γ� �� obj � dom�S�

� dom�S� � dom�Γ�
∗ � GS has no cycles and is of finite size

� �S�obj � 	 
c, ctnr ,F � ��
Γ�obj � 	 c

� dom�F� 	 �fd  
t, fd, s� ∈P c, s � �normal, contained��
� rng�F� � dom�S� � �null�
� �F�fd� � dom�S� � 
c�, fd, s� ∈P c� ��

classTag�S�F�fd��� �P c�

∗ � �F�fd� 	 F�fd �� � null� 
t, fd, contained� ∈P c �

t �, fd �, contained� ∈P c� �� fd 	 fd �

∗ � ctnr 	 null �� ��obj � � dom�S� . P ,S � obj �
� obj

∗ � ctnr � dom�S� �� P ,S � ctnr � obj
∗ � ctnr � dom�S� ��

�c� � containersP �c� . classTag�S�ctnr�� �P c�

∗ � �P,S � obj � obj �� �� ctnr�S�obj ��� 	 obj
∗ � ctnr � dom�S� � �null��
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Those clauses marked with ∗ are added to ClassicJava
for Jacques. In order, they place the following requirements
on the store:

� No object may have two contained fields that refer to
the same object. This allows us to set an object’s
container to null when we remove it from its container
without breaking any other invariants.

� If obj ’s container is null, then there exists no object
that contains obj .

� If obj ’s container is obj �, then obj � contains obj .

� If obj has class tag c and container obj �, then obj � must
have a class tag that is a subtype of one of class c’s
containers.

� If obj contains obj �, then obj � must specify obj as its
container.

� An object’s container is either a valid object reference
or null.

Lemma 1 (Containment Path Consistency)
If P , Γ �σ S and S�obj 	 � �c, ctnr ,F � and ctnr � null, then
there exists a class c� � containersP �c	 such that

classTag�S�ctnr		 
P c�.

This lemma follows fairly directly from P , Γ �σ S. Since
GS is finite and acyclic, all paths have finite length, and
therefore a simple induction on the length of the path proves
that all paths in the object containment graph are consistent
with the class containment graph. We use this result in
the proof of the subject reduction lemma to ensure that
the results of getAcqFieldP and getAcqMethodP have the
expected types.

5. JACQUES DESIGN ISSUES
In developing Jacques, we encountered several interest-

ing design problems. We rejected some design alternatives
because they break type safety; for others, we based our
decisions on pragmatics. In this section, we discuss these
design choices and provide rationales. We use the program
in figure 13 as a running example.

5.1 Containment Cycles
The object containment graph cannot have cycles, as Gil

and Lorenz explain. This does not mean, however, that
the class containment graph should be acyclic as well. As
stated in section 2, acquisition is often useful in conjunction
with the composite pattern. It is frequently essential in this
pattern that objects be allowed to contain other instances
of their own class (or a superclass). For a concrete example,
consider a GUI toolkit library in which classes such as Panel
and Button are subclasses of Component. If instances of
Panel cannot contain other instances of Panel or instances
of (subclasses of) Component, then programmers have too
little freedom to compose objects. Therefore, we allow cycles
within the class containment graph. Acquisition remains
well-defined as long as the object containment graph has no
cycles, and the ct-setj reduction enforces this restriction at
runtime.

This design choice is orthogonal to type safety. As dis-
cussed in section 4.4, we have proved type soundness with
cycles in the class containment graph.

5.2 Acquisition by Value and by Name
In their original description of acquisition, Gil and Lorenz

do not address field assignment and how it interacts with
acquisition. With assignment, it becomes important to de-
termine when acquisition takes place. We considered two op-
tions, which we call “acquisition-by-value” and “acquisition-
by-name,” by analogy with call-by-value and call-by-name.
The primary difference between the two is the point at which
the acquiring object receives the value of the container’s
field.

In our running example (figure 13) with acquisition-by-
value, the acquiring object anItem receives the value of its
acquired fields when it is placed in its container aCtnr. Sub-
sequent modifications to aCtnr’s fields are not automatically
visible to anItem. With acquisition-by-name, on the other
hand, anItem receives the value of its acquired fields anew
each time the fields are referenced. Therefore, modifications
to aCtnr’s fields are automatically visible to anItem. In both
cases, type soundness is preserved as long as the value in
aCtnr.fd has a type compatible with that declared for an-
Item.fd.

The choice of acquisition-by-value raises two questions:

1. If we remove anItem from its container aCtnr, does it
preserve the field values it acquired from aCtnr, or do
those fields now become undefined?

2. If we then add anItem to another container aCtnr�, does
it preserve its existing field values, or does it replace
them with the values then current in its new container?

With acquisition-by-name, in contrast, the answers to these
questions follow directly from the definition above. This
ambiguity leads us to believe that acquisition-by-name is
the better mechanism, from both a semantic as well as a
pragmatic perspective.

5.3 Types of Acquired Fields
In the example of figure 13, anItem acquires the field fd

from its environment, specifically the container aCtnr. The
class Container1 defines fd to have type Prop1, but Item ac-
quires it with Property’s interface. Since Prop1 is a sub-
type of Property, this acquisition is safe. In general, ac-
quiring classes may expect a more general type for their
acquired fields than their environments actually provide.
For increased flexibility, the definition of Jacques, through
the canAcqP predicate, allows just this sort of type vari-
ance. (Note that this is similar to, though not exactly the
same as, the traditional notion of contravariance: we have
Prop1 
P Property but Item �P Container1, so the idea of
one type getting larger while the other gets smaller is not
applicable.)

5.4 Types of Acquired Methods
In our example, Item acquires the method meth with ar-

gument type Prop2 and result type Property. This is safe so
long as the method that is actually executed as as result of
calls to anItem.meth (that is, the method provided by the
context) allows a more general type for its arguments and
returns a value of a more specific type. So, since Prop2 
P

Property and Prop1 
P Property, Item can safely acquire
meth from Container1. The definition of canAcqMethP allows
this flexibility. This is only safe, however, because Jacques
does not support method overloading. As we scale acquisi-
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... ...

...

acquire Property meth(Prop2)

Container1

Prop1 meth(Property p) { ... }

contains Item it

Prop1 fd

Prop2 fd2

Container2

contains Item it

Prop2 fd

Property meth(Prop2 x) { ... }

Prop1 Prop2

PropertyItem : contained Ctnr1, Ctnr2

Prop1 fd2

acquire Property fd

class Main �
Container1 aCtnr
Item anItem
. . .
Object run () �

. . .
aCtnr.it = anItem // anItem contained in aCtnr
. . .

�
. . .

�

Figure 13: Jacques running example

tion to a language with method overloading, we may have
to restrict method acquisition to use invariant types.

5.5 Assignment to Acquired Fields
Allowing assignment to acquired fields with “contravari-

ant” typing as described above is not type-safe. In our run-
ning example, an assignment such as

anItem.fd = new Prop2()

would type-check because anItem.fd is declared to have type
Property. However, since anItem acquires the field fd from
aCtnr, and aCtnr.fd has type Prop1, allowing assignments
such as the above would break type safety. There are three
possible strategies that would allow assignment to anItem.fd
while preserving type safety:

1. The type of an acquired field must match exactly in
the acquiring class and the container. In our example,
this would correspond to requiring Item to acquire the
field fd with type Prop1 (which would in turn prevent
Container2 from containing Item).

2. We could restrict the assignment statement while pre-
serving variance in acquired field types. In this case,
the value on the right-hand side of an assignment must
have exactly the same type as the left-hand side; sub-
typing would no longer be allowed here.

3. We could preserve the variance in acquired field types
and simply disallow all assignments to acquired fields.

The second option has several drawbacks. First, as long
as we preserve subsumption throughout the rest of the lan-
guage, this restriction could only be performed by a dynamic
check, which would complicate the semantics yet further.
Second, it would restrict the types allowed on the left-hand
side of an assignment statement. In Java, for instance, the
left-hand side of such an assignment statement could not
have an interface type. Because interfaces can never be in-
stantiated directly, it would be impossible for the value of
the right-hand side to have exactly the same type as the
left. This would severely constrain assignment statements.

Finally, it would forbid subsumption in a particular con-
text. Not only would this create asymmetry in the language
design, it would do so in a particularly restrictive fashion,
due to the frequent occurrence of assignment statements in
object-oriented programs.

Therefore, we must choose between the first and third
options. Jacques implements the third option, as we con-
jecture that it is more pragmatically useful than the first.
Without the benefit of experience with acquisition in real-
world software projects, though, we cannot answer this ques-
tion definitively, and we need to revisit this issue once we
have gained more experience.

5.6 Changing Containers
With the ability to mutate fields in existing objects comes

the ability to mutate the object containment graph after
it has been established. While this ability may be neces-
sary in some applications, we want to preserve the invariant
that aCtnr contains anItem if and only if anItem’s container
is aCtnr. This allows both objects, but particularly aCtnr,
to make useful assumptions about the object containment
graph at runtime.

For this reason, we prohibit programs from moving an
object from one container to another in a single assignment
statement, because it can easily break the containment hier-
archy property. This restriction is enforced by the x-ct-setj
reduction, which requires an object’s container pointer to be
null before it can be added to a container. An alternative
would be to follow Alan Kay’s maxim of replacing assign-
ment with higher-level forms of mutation operations [14],
specifically a switch-container operation.

5.7 Forwarding and Delegation Semantics
Gil and Lorenz discuss the choice between forwarding and

delegation semantics for acquired methods. To define these
terms as applied to environmental acquisition, consider our
running example, in which anItem acquires the method meth
from aCtnr; recall that Item �P Container1. Under forward-
ing semantics, when Main invokes anItem.meth, this is bound
to aCtnr during the execution of the method’s body. With
delegation semantics, this is instead bound to anItem.
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By type rule Methj , the body of Container1.meth is elab-
orated under the assumption that this has type Container1
(or any subtype). Hence, the body can refer to arbitrary
features of Container1, such as fd2. If, instead, this were sud-
denly bound to anItem at runtime, references to properties
of Container1 may become undefined or ill-typed. Specif-
ically, a reference to this.fd2 would reduce to a value of
type Prop1 rather than Prop2 as expected. We thus conclude
that forwarding semantics for environmental acquisition is
the only safe possibility in a statically typed language.

5.8 Guarded Field References
As defined, Jacques throws an exception upon a refer-

ence to an acquired field if the object in question is not in
an environment that provides the expected field. In their
original formulation, Gil and Lorenz propose guarded field
references as a protection against this exception. A guarded
field reference is simply a field reference expression that in-
cludes a default value to be used if the object is not in a
suitable environment. If the compiler can prove that, for a
particular field reference, the object is always in a suitable
environment, the programmer may omit the default.

Since Jacques’s type system cannot prove this for any
field reference, all references would have to have guards in
order to preserve safety. As a result, proving type soundness
with guards is not markedly different from proving it with
the incomplete context exception. Further, we conjecture
that in practice, most programmers would specify null as
their guard expression, thus hiding the incomplete context
exception within a null pointer exception and thus severely
hindering their own debugging efforts. Therefore, we have
have chosen to omit guards and to raise an exception in cases
where an object’s environment does not suffice. If practical
experience suggests that such guards are practically useful,
we may add them to the language later.

6. SCALING TO FULL JAVA
To scale Jacques’s design to full Java [13] or C# [3], we

must address two features of the larger language that our
model does not include: concurrency and field shadowing. It
seems that acquisition can co-exist with concurrency with-
out any more than the normal difficulties associated with
concurrent programs. In particular, if one thread changes
the object containment graph while another is traversing
that graph to look up an acquired field value, the results are
undefined. It would be possible to define an acquired field
reference to be an atomic operation via a Java synchronized
block, but this seems unnecessary; the difficulties that can
arise in situations like this are no worse than those which
may arise in concurrent Java programs that involve heavy
pointer manipulation.

Java-style field shadowing presents a more complicated
challenge. In the case where an object acquires a shadowed
or shadowing field from its container, it is no longer clear
which field should be visible to the acquiring object. Con-
sider the following class definitions:

class A extends Object � � � �X x � � � �
class B extends A � � � �X x � � � �
class C extends Object contained A �� � � acquires X x � � � �

If c, an instance of C, is contained within b, an instance
of B, it is most consistent with Java’s current behavior if c

acquires A.x rather than B.x, as c acquires properties from
its container as viewed through A’s interface. However, the
language should provide the programmer with a means of
overriding this default when necessary, much as Java allows
the programmer to cast the object in a field reference ex-
pression to select which overloaded field is used.

7. RELATED WORK
The recent work in ownership types [2, 1] introduces con-

straints on the object composition graph in order to pre-
serve certain desirable invariants, much as we do. In such
a type system, the programmer annotates all field declara-
tions, local variable declarations, method arguments, and
method return types with ownership information. The type
system then ensures that all paths from the root of the ob-
ject containment graph to an object must pass through the
object’s owner. Consequently, if an object is owned by its
container, only its container may refer to it. This restricts
object aliasing and makes it easier to reason about object-
oriented programs in the face of field mutation.

While ownership types and types for environmental ac-
quisition both restrict the shape of the object containment
graph, the similarities end there. While ownership con-
straints could help ensure that an object has at most one
container, we believe that preventing aliasing to the degree
achieved by their system is overly restrictive. In Jacques,
we explicitly allow an object to possess a reference to the
contents of another object’s contained field, so long as this
additional reference does not imply a containment relation-
ship. Further, we could remove the need for the “already
contained” exception without complicating the type system
further by disallowing direct assignment to contained fields
and providing a switch-container operation that manipulates
the object containment graph while preserving all desired in-
variants. Finally, ownership types do not appear to help our
existing system’s most severe drawback, namely the inabil-
ity to detect at compile time whether an object will be in
an environment that provides all of the necessary acquired
fields and methods.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have resumed Gil and Lorenz’s language

design experiment in environmental acquisition. We have
extended ClassicJava to provide a formal operational se-
mantics and a formal type system for a language that in-
cludes acquisition, thus placing the mechanism on a firm
theoretical grounding.

We have also explored several of the design alternatives in
the formal context, and we have found that type soundness
means that many of these alternatives can only be resolved
in certain ways. Soundness alone is not sufficient to resolve
all of the design choices, however, so we clearly need more
experience with acquisition to make the appropriate choices.

This research suggests three additional projects. First, we
need to implement acquisition by modifying an existing class
system, so that we can conduct program design experiments
in the context of a full programming language. Second, we
must search existing class libraries and frameworks for in-
stances of environmental acquisition via pointer chasing or
callbacks to collect a wide range of examples for this fea-
ture. Third, we must investigate the use of more advanced
type systems for acquisition. These include the ability to
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infer certain types, such as the list of possible containers for
a class, and the use of resource-aware type systems to en-
sure that certain exceptions (most notably the “incomplete
context” exception) cannot be generated.
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