
A Simple Typed Intermediate Language for Object-Oriented
Languages

Juan Chen
Microsoft Research
One Microsoft Way

Redmond, WA 98052

juanchen@microsoft.com

David Tarditi
Microsoft Research
One Microsoft Way

Redmond, WA 98052

dtarditi@microsoft.com

ABSTRACT
Traditional class and object encodings are difficult to use
in practical type-preserving compilers because of the com-
plexity of the encodings. We propose a simple typed inter-
mediate language for compiling object-oriented languages
and prove its soundness. The key ideas are to preserve
lightweight notions of classes and objects instead of com-
piling them away and to separate name-based subclassing
from structure-based subtyping. The language can express
standard implementation techniques for both dynamic dis-
patch and runtime type tests. It has decidable type checking
even with subtyping between quantified types with different
bounds. Because of its simplicity, the language is a more
suitable starting point for a practical type-preserving com-
piler than traditional encoding techniques.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Classes and Objects; D.3.1 [Programming
Languages]: Formal Definitions and Theory

General Terms
Languages

Keywords
Typed intermediate language, class and object encoding

1. INTRODUCTION
Preserving types during compilation has significant bene-

fits [33, 32, 25, 14]. Types can be used to debug compilers,
to guide optimizations, and to generate safety proofs for
programs [26]. In practice, however, compilers for object-
oriented languages do not use statically typed low-level in-
termediate languages, even though their input is statically
typed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

One reason compilers for object-oriented languages have
not adopted type-preserving compilation is the complex-
ity of traditional class and object encodings. A practical
compiler requires simple, general and efficient type systems.
First, compiler writers who are not type theorists should be
able to understand the type system. Second, the type sys-
tem needs to cover a large set of realistic language features
and compiler transformations. Third, the type system needs
to express standard implementation techniques without in-
troducing extra runtime overhead. Traditional encodings
are not a good match for these goals. We discuss these en-
codings more in Section 7.
This paper describes a simple typed intermediate lan-

guage LILC (Low-level Intermediate Language with Classes)
for compiling class-based object-oriented languages. LILC is
lower level than JVML [25] or CIL [14]. The key ideas are to
preserve lightweight notions of classes and objects instead of
compiling them away and to separate name-based subclass-
ing from structure-based subtyping.
LILC divides types into two parts: one part uses class

names to type objects and keeps the name-based class hier-
archy; the other part uses record types and has structural
subtyping. Each class has a corresponding record type that
represents its object layout. Objects and records can be
coerced to each other with no runtime overhead. Keeping
classes and objects has a low cost because most interesting
work, such as field fetching, method invocation and cast, is
done on records.
Our approach simplifies the type system. First, structural

recursive types are not necessary because each record type
can refer to any class name, including the class to which the
record type corresponds. Second, it simplifies the bounded
quantification that is needed to express inheritance. The
bounds for type variables are in terms of subclassing, not
subtyping as in traditional bounded quantification. Thus,
the bounds must be classes or type variables, not arbitrary
types. As a result, LILC has decidable type checking.
The contributions of this work include:

• LILC is simpler and more natural than traditional en-
codings. It is also sound and efficient.

• LILC can express standard implementation strategies
for self application, dynamic type dispatch, and run-
time type tests.

LILC uses existential types and invariant array types
to describe covariant source-level array types. It can
also express runtime “store checks”.

38

vtable

x

tag

distance

tag(Point)

Instructions
for distance

Figure 1: Object Layout for Point

By supporting the decomposition of runtime primi-
tives such as type cast and runtime store checks, LILC

makes the interface between the runtime system and
compiled code more explicit and checkable.

The rest of the paper is organized as follows. Section 2
gives an informal overview of LILC . The next two sections
explain the syntax and semantics of LILC . Section 5 de-
scribes a source language and the translation from the source
language to LILC . Section 6 presents some extensions. Sec-
tion 7 discusses related work and Section 8 concludes.

2. OVERVIEW
This section describes informally how LILC addresses the

implementation of object-oriented features such as object
layout, inheritance, dynamic dispatch and runtime type tests.
Roughly speaking, LILC supports features in Featherweight
Java [21], assignments and arrays. For clarity, we make
some simplifications. First, we omit non-virtual methods.
The compiler can transform those methods to global func-
tions (with explicit “this” pointers) because it knows all call
sites of those methods. Second, we make each class contain
declarations of all its members, including the inherited ones
from its super classes. Third, we rename variables so that
they are all unique. Finally, we omit null references and
consider only proper objects.

2.1 Object Layout
LILC has both class names and record types. We use B,

C and D to range over class names. Each class name C
has a corresponding record type R(C) that describes its ob-
ject layout—the organization of fields, methods and runtime
tags. R is not a constructor in LILC , but a “macro” used
by the type checker (Section 4.1.1).
We use a standard object layout. An object of C contains

a vtable of C and fields. Therefore, R(C) is a record type
containing entries for C’s vtable and fields. The vtable is a
record that includes a runtime tag for the class and function
pointers for the virtual methods. The runtime tag contains
class-specific information and is used to identify the class.
As shown in Section 4.1.1, it is easy to substitute other

layout strategies for the current one.
The type of a field or a method in R(C) can refer to

any class name declared in the program, including C. This
allows a straightforward typing of self-application seman-
tics [22], where each method takes the “this” pointer as its
first parameter. LILC assigns the type ∃α � C. α, which
represents objects of class C or C’s subclasses, to the “this”
pointer of methods in C. We explain the type in Section 2.2.

We use the following example throughout the paper:

class Point {
int x;
int distance(){. . .}}

The object layout of Point is shown in Figure 1. Type
R(Point) represents this layout naturally:

R(Point) =
{vtable : {tag : Tag(Point),

distance : (∃α � Point. α) → int},
x : int}

The tag of a class C identifies C at run time. Its type
is represented as Tag(C), where Tag is an abstract type
constructor. For simplicity, we treat tags as abstract.
An object of C can be coerced to a record of type R(C)

and vice versa. The coercions are no-ops at run time and
introduce no overhead.

Object Creation To create an object of class C, we cre-
ate a record of R(C) and then coerce the record to an object.

Field Fetch To fetch a field from an object, we coerce
the object to a record and fetch the field from the record.

Method Invocation To call a method on an object o
of class C, we coerce o to a record, fetch the vtable from
the record, then fetch the method from the vtable, and
pass o (after packing it to have type ∃α � C. α) to the
method. This is exactly how most compilers implement vir-
tual method invocation, if we ignore types and coercions,
which turn into no-ops at run time anyway.

R(C) specifies the full shape of an object of C, including
the fields and methods from C’s super classes. The inher-
ited members must have the same order in C as in C’s super
classes, and appear before the members specific to C. Sup-
pose class Point2D extends class Point as follows:

class Point2D : Point{
int y;
int distance(){. . . y . . .}}

R(Point2D) will be the following type :

R(Point2D) =
{vtable : {tag : Tag(Point2D),

distance : (∃α � Point2D. α) → int},
x : int, y : int}

R(Point2D) includes members in Point, but it has its own
tag and its own type for the “this” pointer.

2.2 Subclassing and Bounded Quantification
LILC defines a subclassing relation “�” between class

names to preserve the name-based class hierarchy in the
source program. If a class C extends class B, then C � B.
For example, Point2D � Point. The subclassing relation is
reflexive and transitive.
In most source languages, a class name C describes ob-

jects of C and C’s subclasses. LILC translates a source-level
class name C to an existential type with subclassing-based
quantification: ∃α � C. α, where α indicates the “actual”
class. Objects that have type C or one of C’s subclasses can
be packed to have type ∃α � C. α. A class name in LILC

represents only objects of itself.
Similarly, type variables introduced by universal types can

have bounds too. Type ∀α � C. τ describes terms (poly-
morphic functions) that work on C and any subclass of C.

39

The bound of a type variable must be a class name or
another type variable, not an arbitrary type. The bound
never refers to the type variable it constrains1.

2.3 Dynamic Dispatch
Dynamic dispatch requires a distinction between the static

type and the dynamic type of an object. LILC uses class
names for “exact” types (dynamic types) and existential
types for “imprecise” types (static types).
By having “exact” notions, LILC excludes unsafe dynamic

dispatch. Consider the following function:

void Test(Point p1, Point p2){
vt = p1.vtable;
dist = vt.distance;
dist(p2); }

This function is unsafe, even though the distance method
fetched from p1 requires an object of Point and p2 is indeed
an object of Point. The function Test can be called in an
unsafe way:

Point point1 = new Point2D(. . .);
Point point2 = new Point(. . .);
Test(point1, point2);

The argument point1 is an object of Point2D. The dis-
tance method fetched from point1’s vtable accesses the field
y, which point2 does not have. A language without a way to
express “exact” dynamic types cannot catch such errors.
In LILC , if an object has type τ and its vtable contains

a method m, then only objects of type ∃α � τ. α can be
passed to the “this” pointer of m. In this representation,
Test is translated to an ill-typed function:

void Test(p1 : ∃α � Point. α, p2 : ∃β � Point. β){
(α, p′

1) = open(p1);
p′′
1 = toRecord(p′

1);
vt = p′′

1 .vtable;
dist = vt.distance;
dist(p2); //ill-typed! }

p′
1 has type α and dist requires an object of type ∃δ � α. δ.

Object p2 does not have this type.

2.4 Subtyping
LILC also has structural subtyping, represented by “≤”.

The subtyping relation is reflexive and transitive.
Record types have standard prefix subtyping and depth

subtyping on immutable fields. By prefix subtyping, ap-
pending more fields to a record type creates a subtype. The
super type is a prefix of the subtype. Specializing immutable
field types leads to depth subtyping. LILC excludes depth
subtyping on mutable fields to preserve soundness. The la-
bel order in a record type is significant because the fields
represent the physical layout of data.
LILC uses record subtyping to approximate the layout of

an object whose “exact” type is unknown at compile time.
A detailed explanation is in Section 4.1.1.
Bounded quantified types have subtyping. The most fre-

quently used rule is (∃α � C. α) ≤ (∃α � B. α) if C � B.
It is used for:

1LILC has a much simpler solution to binary methods than
F-bounded quantification [5]. See Section 6.2.

tag(C) tag(B)
tag

vtable of C

Figure 2: Tag Chains

Inheritance Subsumption If C � B and an object o
has type ∃α � C. α, then o can be used wherever an object
of class B or B’s subclasses (type ∃α � B. α) is expected.

Inherited Method ImplementationA subclass can in-
herit a method implementation from its super classes. Sup-
pose class C is a subclass of B. The “this” pointer of meth-
ods in C has type ∃α � C. α. The “this” pointer of meth-
ods in B has type ∃α � B. α. Because (∃α � C. α) ≤
(∃α � B. α), a function that takes a parameter of type
∃α � B. α can be used as one with a parameter of type
∃α � C. α, that is, C can use B’s method implementation.
Subclassing is distinct from subtyping. If C � B and C

and B are different classes, then C is not a subtype of B, and
neither is R(C) a subtype of R(B), because C represents
objects of exact C. An object of exact C cannot be used
where an object of exact B is needed.

2.5 Type Cast
It is difficult to model the implementation of downward

type casts in a typed language. Most typed intermediate
languages treat downcast as a primitive.
Downward type casts check at run time whether an ar-

bitrary object belongs to some class or its subclasses. In a
typical implementation, each class stores a tag in its vtable.
If C extends B, then the tag of C has a pointer pointing
to the tag of B (Figure 2). The pointers form a tag chain.
Downward type casts fetch tags in the chain and compare
them with the tag of the target class.
This implementation can be expressed as a well-typed

function in LILC that can be used for arbitrary objects and
arbitrary classes. The key ideas are to use types to con-
nect an object with the tag it contains, and to refine types
according to the tag comparison result.
The tag of class C is represented as a constant tag(C),

which has type Tag(C). If an object has type τ , then the
tag it contains has type Tag(τ). The type checker checks
the connection at object creation sites.
Tag comparison is based on that two classes are the same

iff their tags are equal. If an object o has type τ and the
tag in o is equal to tag(C), then τ = C. If one of the parent
tag, which identifies a parent class of τ , is equal to tag(C),
then τ � C and o can be packed to have type ∃δ � C. δ.
Figure 3 shows a global polymorphic function that im-

plements downcast. More details of the function are in
Section 4.1.3. Primitive “ifEqTag” compares tags and “if-
Parent” tests whether there exists a parent tag. Each of
them corresponds to only two x86 instructions—compare
and branch. We could further break down the primitives by
exposing tag details. The details are irrelevant to our basic
ideas, so we keep tags abstract for simplicity.
A companion technical report explains how to express op-

timizations of the above linear search, such as caching the

40

fix Downcast〈α, β〉(tα : Tag(α), obj : β) : ∃δ � α. δ = //tα : tag of target class α, obj : object to cast
loop[α, β, β](tα, obj, (c2r(obj).vtable).tag)

fix loop〈α, γ, β � γ〉(tα : Tag(α), obj : β, tγ : Tag(γ)) : ∃δ � α. δ = //tγ : a tag in the tag chain
ifEqTag∃δ�α. δ(tγ , tα) then pack β as δ � γ in (obj : δ) else //γ = α

ifParent(tγ) then bind (γ′, t′γ) in loop[α, γ′, β](tα, obj, t′γ) else error[∃δ � α. δ] //γ � γ′

Figure 3: Cast Method

most recently successful parent tag, or storing a display of
super classes [10]. It also explains array casting.

2.6 Arrays
Covariant array types require runtime “store checks” each

time an object is stored into an array. If array a has type
array(B), to store an object of type B in a, we have to
check whether the object has the “actual” element type of
a because a might be an array of B’s subclasses.
LILC uses existential types and invariant array types to

express source-level array types. LILC type ARRAY (B) =
∃α � B. {tag : Tag(α), table : array(∃β � α. β)} represents
source type array(B). The outer existential type binds the
“actual” element type of the array, and the inner one binds
the “actual” type of each element. The tag indicates the ar-
ray element type. The source-level array subtyping is trans-
ferred to subtyping on existential types in LILC . If C is a
subclass of B, then ARRAY (C) ≤ ARRAY (B).
To store an object in an array, LILC programs must ex-

plicitly check whether the object matches the element type
of the array. The cast routine in Figure 3 will suffice. The
checks are inserted automatically by the translation from
source programs, and can be eliminated if the type system
can prove that the elimination is safe.
LILC relies on runtime checks for array-bounds checking.

For simplicity, it does not reason about integer constraints.

3. SYNTAX OF LILC

LILC extends the polymorphic lambda calculus with class
names, subclassing, subclassing-based quantification and im-
perative features. Figures 4, 5 and 6 show the syntax. The
notation • represents empty lists.

3.1 Kinds and Types

κ ::= Ω | Ωc

τ ::= int | C | Tag(τ) | α | array(τ)
| ∀α � τ. τ ′ | ∃α � τ. τ ′ | (τ1, . . . , τn) → τ

| {lφ1
1 : τ1, . . . , l

φn
n : τn} | {{lφ1

1 : τ1, . . . , l
φn
n : τn}}

tvs ::= • | α � τ, tvs
φ ::= I | M

Figure 4: Kinds and Types

LILC uses a special kind Ωc to classify class names: only
class names and type variables that will be instantiated with
class names have kind Ωc. Topc is a special class name that
is a super class of all classes, like System.Object in Microsoft
CLI. Kind Ωc guarantees that certain operations, such as
“�” and “Tag”, are applied properly. Kind Ω is used for
other types. Kind Ωc is a subkind of Ω.

Standard types in LILC include int, type variables, array
types, function types and record types {lφ1

1 : τ1, . . . , l
φn
n :

τn}. The superscript annotations I or M on record fields
indicate immutable or mutable fields respectively. For con-
venience, I is often omitted.
Non-standard types are class names, tag types, bounded

quantified types and exact record types. Section 2 explained
the first three types already.
Exact record types are denoted by “{{” and “}}”. Some-

times the type checker needs to know the full shape of a
record—all fields in the record. For example, when a record
is coerced to an object, the record must have and only have
the elements specified in the class declaration. Extra fields
are undesirable. The normal record type is imprecise be-
cause of prefix subtyping. A record of an exact record type
{{lφ1

1 : τ1, . . . , l
φn
n : τn}} has and only has fields labeled as

l1, . . . , ln. These fields have types τ1, . . . , τn respectively.
Type R(C), which describes the object layout of C, is an

exact record type. The vtable in R(C) also has an exact
record type to exclude extra fields (extra methods).
To simplify the type system, LILC has the subtyping rule

{{lφ1
1 : τ1, . . . , l

φn
n : τn}} ≤ {lφ1

1 : τ1, . . . , l
φn
n : τn}.

Type ∀α1 � τ1.∀αn � τn.τ is often abbreviated as
∀α1 � τ1, . . . , αn � τn.τ . Existential types have similar
abbreviation. The upper bound Topc is often omitted.

3.2 Values and Expressions

v ::= n | (| C(v) | tag(C) | pack τ as α � τu in (v : τ ′)
hv ::= {li = vi}n

i=1 | [v0, . . . , vn−1]
τ

| fix g〈tvs〉(x1 : τ1, . . . , xn : τn) : τ = em

e ::= x | n | (| tag(C) | C(e) | c2r(e) | error[τ]
| new[τ]{li = ei}n

i=1 | e.l | e1.li := e2 in e3

| new[e0, . . . , en−1]
τ | e1[e2] | e1[e2] := e3 in e4

| x : τ = e1 in e2 | x := e1 in e2

| e[τ1, . . . , τm](e1, . . . , en)
| pack τ as α � τu in (e : τ ′)
| (α, x) = open(e1) in e2

| ifParent(e) then bind (α, x) in e1 else e2

| ifEqTagτ (et1, et2) then e1 else e2

Figure 5: Values and Expressions

LILC has the following word-size values: integer literal n,
label ((a pointer to a value on the heap), C(v) representing
an object of C coerced from a record labeled by v, runtime
tag tag(C) for class C and packed word-size values.
Large values—records, arrays and functions—are allocated

on the heap. Function “fix g〈tvs〉(x1 : τ1, . . . , xn : τn) : τ =
em” declares a function g with type variables tvs, formals
x1 : τ1, . . . , xn : τn, return type τ and function body em.
The body em can call g recursively.

41

Most expressions in LILC are standard. The notation
“:=” stands for assignment and “e[e′]” stands for array el-
ement access. Expression “new[τ]{l1 = e1, . . . , ln = en}”
creates a record of type τ . Expression “new[e0, . . . , en−1]

τ”
creates an array of τ . The let expression “x : τ = e in e′”
specifies the type of the new variable x. The pack expres-
sion “pack τ as α � τu in (e : τ ′)” hides type τ with a type
variable α bounded by τu.
Expression “C(e)” coerces a record e to an object of C,

and “c2r(e)” coerces an object e to a record.
Expression “ifParent(e) then bind (α, x) in e1 else e2” tests

whether tag e has a parent tag. If so, a new value variable
x is introduced to represent the parent tag and a new type
variable α is bound to the type x indicates, and the control
transfers to e1. Otherwise, the control transfers to e2.
Expression “ifEqTagτ (et1, et2) then e1 else e2” is a condi-

tional branch for tag comparison. If two tags et1 and et2 are
the same, e1 is evaluated. Otherwise e2 is evaluated. The
expression specifies the result type τ for the whole expres-
sion to simplify type checking.
Expression “error[τ]” represents runtime errors, such as

cast failures. Type τ means that a value of type τ is expected
if no errors happen. Future versions of LILC will replace
error expressions with exception handling.

3.3 Classes and Programs

field ::= f : τ
method ::= m : ∀ tvs (τ1, . . . , τn) → τ

class ::= C : B{−−−→field,
−−−−−→
method}

H ::= • | H, (❀ hv
V ::= • | V, x = v

prog ::= (
−−−→
class;H ;V ; e)

Figure 6: Classes and Programs

A field declaration “f : τ” declares a field f of type τ .
Type τ contains no free type variables. A method declara-
tion “m : ∀ tvs (τ1, . . . , τn) → τ” declares a method m with
type variables tvs, formal types τ1, . . . , τn and return type
τ . Types τ1, . . . , τn and τ can contain only type variables in
tvs. Method declarations do not have explicit “this” types.
A class declaration has a class name, a parent class, a

collection of field declarations and method declarations (−→ρ
means a list of items in ρ). Class declarations contain only
the signatures of their methods, not any implementations.
Method bodies are translated to functions on the heap, and
they are called through function pointers inside vtables.
Finally a program has a set of class declarations, a heap H

that maps labels to heap values, a set of variable-value bind-
ings V , and a main expression. Method implementations
and vtables are static data on the heap and are generated
during the translation from the source language.

4. LILC SEMANTICS

4.1 Static Semantics
LILC maintains a class declaration table Θ that maps class

names to declarations. The class declaration part of a pro-
gram can serve as such a table.
A kind environment ∆ tracks type variables in scope and

their bounds. Each entry in ∆ introduces a new type vari-

able and an upper or lower bound of the type variable. The
bound is a class name or another type variable introduced
previously in ∆. The typing rule for expression “ifParent”
introduces type variables with lower bounds (Figure 10).
A heap environment Σ maps labels to types. A type en-

vironment Γ maps variables to types. An entry x :M τ in Γ
means that variable x is mutable. Substitution τ/α means
replacing α with τ .

4.1.1 Helper Functions
We first explain three important helper functions that the

type checker uses.
The first function addThis(τthis, τ) adds τthis, the type

for the “this” pointer, to a function type τ .

addThis(τthis,∀ tvs (τ1, . . . , τn) → τ)
= ∀ tvs(τthis, τ1, . . . , τn) → τ

Suppose a class C has fields f1 : s1, . . . , fn : sn and meth-
ods m1 : t1, . . . ,mk : tk. Function R(C) returns an exact
record type that represents the object layout of C. Function
ApproxR(α, C) returns a normal record type that approxi-
mates R(α) for some type variable α � C.

R(C) = {{vtable : {{tag : Tag(C),
m1 : addThis(∃γ � C. γ, t1), . . . ,
mk : addThis(∃γ � C. γ, tk)}},

fM
1 : s1, . . . , f

M
n : sn}}

ApproxR(α,C) = {vtable : {tag : Tag(α),
m1 : addThis(∃γ � α. γ, t1),
. . . ,
mk : addThis(∃γ � α. γ, tk)},

fM
1 : s1, . . . , f

M
n : sn}

ApproxR(α,Topc) = {vtable : {tag : Tag(α)}}
In ApproxR(α,C), the tag has type Tag(α) and the “this”

pointer has type ∃γ � α. γ. ApproxR(α,Topc) contains
only a vtable and the vtable contains only the tag of α.
Structural record subtyping guarantees that the approxi-

mation of ApproxR is valid. Suppose an object o has type
∃α � Point. α. It might be an object of Point or any sub-
class of Point. The layout of o can be approximated by:

ApproxR(α,Point) =
{vtable : {tag : Tag(α),

distance : (∃γ � α. γ) → int},
xM : int }

If o is actually an object of Point2D, its layout is:

R(Point2D) =
{{vtable : {{tag : Tag(Point2D),

distance : (∃γ � Point2D. γ) → int}},
xM : int, yM : int}}

Structural record subtyping in LILC guarantees that
R(Point2D) ≤ ApproxR(α,Point)[Point2D/α] holds.
The two helper functions R(C) and ApproxR(α,C) need

full knowledge of what layout the compiler chooses for ob-
jects. Therefore, the layout information is part of the type
system. However, only three typing rules use the helper
functions. The rest of the type system is independent of the
layout strategy. The soundness of the type system only re-
quires that: (1) ApproxR(α,C) ≤ ApproxR(α,B) if C � B;
(2) R(C) ≤ ApproxR(α,B)[C/α] if C � B (Section C.3 in

42

C ∈ domain(Θ)
Θ; • � C : Ωc

Θ;∆ � τ : Ωc

Θ;∆ � Tag(τ) : Ω

Θ; • � Topc : Ωc

α � τ ∈ ∆ or α � τ ∈ ∆
Θ;∆ � α : Ωc

Θ;∆ � τ : Ωc

Θ;∆, α � τ � τ ′ : Ω

Θ;∆ � ∀α � τ . τ ′ : Ω

Θ;∆ � τ : Ωc

Θ;∆, α � τ � τ ′ : Ω

Θ;∆ � ∃α � τ . τ ′ : Ω

Figure 7: Selected Kinding Rules

Θ(C) = C : B{. . .}
Θ;∆ � C � B

Θ;∆ � τ : Ωc

Θ;∆ � τ � Topc

Θ;∆ � τ : Ωc

Θ;∆ � τ � τ

α � τ ∈ ∆
Θ;∆ � α � τ

α � τ ∈ ∆
Θ;∆ � τ � α

Θ;∆ � τ1 � τ2
Θ;∆ � τ2 � τ3

Θ;∆ � τ1 � τ3

Figure 8: Subclassing Rules

the appendix of the technical report). The type system is
parameterized by the compiler layout strategies.

4.1.2 Types
The kinding judgment Θ;∆ τ : κ means that under

environments Θ and ∆, type τ has kind κ. All rules are
standard except for the kind Ωc. Figure 7 shows some kind-
ing rules. The rest are in the technical report.
The subclassing judgment Θ;∆ τ1 � τ2 means that un-

der environments Θ and ∆, τ1 is a subclass of τ2 (Figure 8).
The subtyping judgment Θ;∆ τ1 ≤ τ2 means that under

environments Θ and ∆, τ1 is a subtype of τ2 (Figure 9).
Subtyping between quantified types is similar to Castagna

and Pierce’s ∀ − top rule [9], where the checker ignores the
bounds of type variables (relax it to Topc) when check-
ing subtyping between the body types. Contrary to LILC ,
Castagna and Pierce’s bounded quantification was based on
subtyping, and did not have the minimal type property [8].

4.1.3 Expressions
The typing judgment Θ;∆;Σ; Γ e : τ means that un-

der environments Θ, ∆, Σ and Γ, expression e has type τ .
Figure 10 shows all expression typing rules.
Only records of type R(C) can be coerced to objects of

C. Coercing an object of C to a record results in a record
of type R(C). Coercing an object of α to a record results in
a record of type ApproxR(α,C) if α � C.
In a call expression “e[τ1, . . . , τm](e1, . . . , en)”, emust have

a function type ∀tvs(s1, . . . , sn) → s. The type arguments
τ1, . . . , τm must satisfy the constraints tvs specifies. The
value arguments e1, . . . , en have types s1, . . . sn respectively,
after the type variables in tvs are replaced with τ1, . . . , τm.
In “ifParent(e) then bind (α, x) in e1 else e2”, tag e has

type Tag(τ) for some type τ . If e has a parent tag, a new
type variable α is introduced for the super class of τ and a
new value variable x (of type Tag(α)) is introduced for the
parent tag.
In “ifEqTagτ (et1, et2) then e1 else e2”, if both et1 and et2

are tags for concrete class names, the type checker only
checks the branch to be taken. Otherwise, the first tag et1

must have type Tag(γ) for some type variable γ. The second

m ≥ n

Θ;∆ � {lφi
i : τi}m

i=1 ≤ {lφi
i : τi}n

i=1

∀1 ≤ i ≤ m,

{
Θ;∆ � τi ≤ τ ′i if φi = I
τi = τ ′i if φi =M

Θ;∆ � {lφi
i : τi}m

i=1 ≤ {lφi
i : τ ′i}m

i=1

Θ;∆ � {{lφi
i : τi}}m

i=1 ≤ {lφi
i : τi}m

i=1

Θ;∆ � ti ≤ si ∀1 ≤ i ≤ n Θ;∆ � s ≤ t

Θ;∆ � (s1, . . . , sn)→ s ≤ (t1, . . . , tn)→ t

Θ;∆ � u1 � u2 Θ;∆, α � Topc � τ1 ≤ τ2

Θ;∆ � (∃α � u1. τ1) ≤ (∃α � u2. τ2)

Θ;∆ � u2 � u1 Θ;∆, α � Topc � τ1 ≤ τ2

Θ;∆ � (∀α � u1. τ1) ≤ (∀α � u2. τ2)

Θ;∆ � τ ≤ τ

Θ;∆ � τ1 ≤ τ2 Θ;∆ � τ2 ≤ τ3

Θ;∆ � τ1 ≤ τ3

Figure 9: Subtyping Rules

tag et2 can be a tag for type τγ , either a class name or a
type variable introduced before γ. The checker uses γ = τγ

to refine the type of the true branch e1, because γ = τγ

must hold if the true branch is taken. The false branch has
no type refinement.
As usual, a subsumption rule says: if τ1 ≤ τ2 and e has

type τ1, then e has type τ2. No similar rules exist for sub-
classing because of the exact class notions.
We elaborate the downcast function in Figure 3 a bit here

to explain the usage of “ifEqTag”. To cast an object obj
of type β to a class α, the loop function compares a tag tγ
in the tag chain of obj with the tag of the target class. tγ
identifies γ and β � γ. If the two tags are equal, then the
cast succeeds: obj is packed to have type ∃δ � γ. δ, which
is ∃δ � α. δ because γ = α. Otherwise, the parent tag of tγ
is fetched and loop is called recursively. The cast fails if no
such parent tag exists. The downcast function Downcast
calls loop with the target tag tα, the object obj and the tag
in obj’s vtable (of type Tag(β)).
The typing judgment Θ;Σ hv : τ means under environ-

ments Θ and Σ, heap value hv has type τ (Figure 11).

Θ; •; Σ; • � vi : τ ∀0 ≤ i ≤ n− 1
Θ;Σ � [v0, . . . , vn−1]τ : array(τ)

hv array

Θ; •; Σ; • � vi : τi ∀1 ≤ i ≤ n

Θ;Σ � {li = vi}n
i=1 : {{lφi

i : τi}}n
i=1

hv record

τf = ∀ tvs (τ1, . . . , τn)→ τ
Θ; tvs; Σ; g : τf , x1 : τ1, . . . , xn : τn � em : τ

Θ;Σ � fix g〈tvs〉(x1 : τ1, . . . , xn : τn) : τ = em : τf
hv fun

Figure 11: Heap Value Typing Rules

4.1.4 Class Declarations and Programs
A well-formed class contains all the members inherited

from its parent, which is solely an implementation strategy
to simplify looking up members. LILC requires that the

43

Θ;∆;Σ; Γ � x : Γ(x)
var

Θ;∆;Σ; Γ � n : int
int

Θ;∆ � τ : Ω

Θ;∆;Σ; Γ � error[τ] : τ error

Θ;∆;Σ; Γ � � : Σ(�)
label

C ∈ domain(Θ)
Θ;∆;Σ; Γ � tag(C) : Tag(C)

tag
Θ;∆;Σ; Γ � e : R(C)

Θ;∆;Σ; Γ � C(e) : C
object

Θ;∆;Σ; Γ � e : C

Θ;∆;Σ; Γ � c2r(e) : R(C) c2r c
Θ;∆;Σ; Γ � e : α Θ;∆ � α � C

Θ;∆;Σ; Γ � c2r(e) : ApproxR(α,C) c2r tv

τ = {{lφ1
1 : τ1, . . . , l

φn
n : τn}}

Θ;∆;Σ; Γ � ei : τi ∀1 ≤ i ≤ n

Θ;∆;Σ; Γ � new[τ]{l1 = e1, . . . , ln = en} : τ record
Θ;∆;Σ; Γ � e : {lφ1

1 : τ1, . . . , l
φn
n : τn} 1 ≤ i ≤ n

Θ;∆;Σ; Γ � e.li : τi
field

Θ;∆;Σ; Γ � e1 : {lφ1
1 : τ1, . . . , lMi : τi, . . . , l

φn
n : τn} Θ;∆;Σ; Γ � e2 : τi Θ;∆;Σ; Γ � e3 : τ

Θ;∆;Σ; Γ � e1.li := e2 in e3 : τ
assignR

Θ;∆;Σ; Γ � ei : τ ∀0 ≤ i ≤ n− 1
Θ;∆;Σ; Γ � new[e0, . . . , en−1]τ : array(τ)

array
Θ;∆;Σ; Γ � e1 : array(τ) Θ;∆;Σ; Γ � e2 : int

Θ;∆;Σ; Γ � e1[e2] : τ
subscript

Θ;∆;Σ; Γ � e1 : array(τ) Θ;∆;Σ; Γ � e2 : int Θ;∆;Σ; Γ � e3 : τ Θ;∆;Σ; Γ � e4 : τ ′

Θ;∆;Σ; Γ � e1[e2] := e3 in e4 : τ ′
assignA

Θ;∆;Σ; Γ � e1 : τ Θ;∆;Σ; Γ, x :M τ � e2 : τ ′

Θ;∆;Σ; Γ � x : τ = e1 in e2 : τ ′
let

x :M τ ∈ Γ Θ;∆;Σ; Γ � e1 : τ Θ;∆;Σ; Γ � e2 : τ ′

Θ;∆;Σ; Γ � x := e1 in e2 : τ ′
assign

Θ;∆;Σ; Γ � e : ∀tvs(τ1, . . . , τn)→ τ
tvs = α1 � u1, . . . , αm � um σ = t1, . . . , tm/tvs

Θ;∆ � ti � ui[σ] ∀1 ≤ i ≤ m
Θ;∆;Σ; Γ � ei : τi[σ] ∀1 ≤ i ≤ n

Θ;∆;Σ; Γ � e[t1, . . . , tm](e1, . . . , en) : τ [σ]
call

Θ;∆;Σ; Γ � e1 : ∃β � τu. τ
α /∈ domain(∆) α /∈ free(τ ′)

Θ;∆, α � τu; Σ; Γ, x : τ [α/β] � e2 : τ ′

Θ;∆;Σ; Γ � (α, x) = open(e1) in e2 : τ ′
open

Θ;∆ � τ � τu α /∈ domain(∆) Θ;∆;Σ; Γ � e : τ ′[τ/α]
Θ;∆;Σ; Γ � pack τ as α � τu in (e : τ ′) : ∃α � τu. τ ′

pack

Θ;∆;Σ; Γ � e : Tag(τ) α /∈ domain(∆) Θ;∆, α � τ ; Σ; Γ, x : Tag(α) � e1 : τ ′ Θ;∆;Σ; Γ � e2 : τ ′

Θ;∆;Σ; Γ � ifParent(e) then bind (α, x) in e1 else e2 : τ ′
ifParent

Θ;∆;Σ; Γ � et1 : Tag(C1) Θ;∆;Σ; Γ � et2 : Tag(C2) C1 = C2 Θ;∆;Σ; Γ � e1 : τ

Θ;∆;Σ; Γ � ifEqTagτ (et1, et2) then e1 else e2 : τ
ifTag eq

Θ;∆;Σ; Γ � et1 : Tag(C1) Θ;∆;Σ; Γ � et2 : Tag(C2) C1 �= C2 Θ;∆;Σ; Γ � e2 : τ

Θ;∆;Σ; Γ � ifEqTagτ (et1, et2) then e1 else e2 : τ
ifTag neq

Θ;∆;Σ; Γ � et1 : Tag(γ) Θ;∆;Σ; Γ � et2 : Tag(τγ)
∆ = ∆1, P (γ),∆2 P (γ) = γ � u or P (γ) = γ � u Θ;∆1 � τγ : Ωc

Θ;∆;Σ; Γ � e1 : τ [γ/τγ] Θ;∆; Σ; Γ � e2 : τ

Θ;∆;Σ; Γ � ifEqTagτ (et1, et2) then e1 else e2 : τ
ifTag tv

Θ;∆;Σ; Γ � e : τ1
Θ;∆ � τ1 ≤ τ2

Θ;∆;Σ; Γ � e : τ2
sub

Figure 10: Expression Typing Rules

44

parent class be declared before the child class. Figure 12
shows the rule for class declarations.

Θ � Topc{}

Θ � B : D{f1 : s1, . . . , fp : sp, m1 : t1, . . . ,mq : tq}
B declared before C in Θ D is optional p ≤ n q ≤ k
Θ; • � si : Ω ∀p + 1 ≤ i ≤ n Θ; • � ti : Ω ∀q + 1 ≤ i ≤ k

Θ � C : B{f1 : s1, . . . , fn : sn, m1 : t1, . . . , mk : tk}

Figure 12: Well-formedness of Class Declarations

A program (Θ;H ;V ; e) is well-formed with respect to a
heap environment if its class declaration Θ is well-formed,
the heap H respects the heap environment, the variable-
value binding V is well-formed and the main expression e
is well-typed (see Figure 13). The main expression e has
no free type variables, and refers only to labels in H and
variables in V .

domain(V) = domain(Γ)
Θ; •; Σ; • � V (x) : Γ(x) ∀x ∈ domain(V)

Θ;Σ � V : Γ

domain(H) = domain(Σ)
Θ;Σ � H(�) : Σ(�) ∀� ∈ domain(H)

Θ � H : Σ

Θ = class1, . . . , classm Θ � classi ∀1 ≤ i ≤ m
Θ � H : Σ Θ;Σ � V : Γ Θ; •; Σ; Γ � e : τ

Σ � (Θ;H;V ; e) : τ

Figure 13: Well-formedness of Programs

4.2 Dynamic Semantics
Figure 14 shows all the evaluation rules except for congru-

ence rules. The programs in the first column evaluate one
step to the corresponding ones in the second column, if the
side conditions in the third column hold. Judgment P �→ P ′

means that program P steps to P ′.
Expressions C(v) and c2r(v) coerce between objects and

records. “ifParent(tag(C)) then bind (α, x) in e1 else e2” steps
to e1 with α replaced with B and x assigned tag(B), if C
extends some class B. Otherwise it steps to e2. Expression
“ifEqTagτ (tag(C1), tag(C2)) then e1 else e2” steps to e1 if
C1 = C2, and to e2 otherwise. The evaluation of an error
expression “error[τ]” infinitely loops.

4.3 Properties of LILC

We have proved the soundness of LILC , in the style of
[34], and the decidability of type checking. Full proofs are
in the technical report.

Theorem 1 (Preservation). If Σ P : τ and P �→
P ′, then ∃Σ′ such that Σ′ P ′ : τ .

Theorem 2 (Progress). If Σ P : τ , then either the
main expression in P is a value, or ∃P ′ such that P �→ P ′.

Proof sketch: by standard induction over the typing rules.
Combining these two theorems, we can conclude that a

well-formed LILC program never gets stuck: if the main

expression in a program is not a value, the program can
always go one more step to another well-formed program.

Theorem 3 (Decidability of Type Checking). It is
decidable whether Θ;∆;Σ; Γ e : τ holds.

Proof sketch: by proving the minimal type property and
decidability of subtyping. We designed a set of syntax-
directed subtyping rules (without the transitivity rule) of
the form Θ;∆ � τ1 ≤ τ2. We proved that the new rules
terminate and that Θ;∆ τ1 ≤ τ2 iff Θ;∆ � τ1 ≤ τ2.
Similarly, we designed a set of syntax-directed expression

typing rules (without the subsumption rule) of the form
Θ;∆;Σ; Γ � e : τ and proved that: (1) the new rules termi-
nate; (2) if Θ;∆;Σ; Γ � e : τ , then Θ;∆;Σ; Γ e : τ ; (3) if
Θ;∆;Σ; Γ e : τ , then ∃τm such that Θ;∆;Σ; Γ � e : τm

and Θ;∆ τm ≤ τ .

Lemma 4 (Bounded Joins and Meets). Two types have
a join (least upper bound) if they have a common upper
bound. Similarly, two types have a meet (greatest lower
bound) if they have a common lower bound. Both joins and
meets are in terms of subtyping.

5. SOURCE LANGUAGE AND
TRANSLATION TO LILC

τ := int | C | array(C)
e := n | (| x | x : τ = e1 in e2 | x := e1 in e2

| new C{f1 = e1, . . . , fn = en} | e.fi

| e1.fi := e2 in e3 | e.m(e1, . . . , en)
| new[e0, . . . , en−1]

τ | e1[e2] := e3 in e4

| e1[e2] | cast[C](e) | cast[C[]](e)
v := n | (
hv := C{f1 = v1, . . . , fn = vn} | [v0, . . . , vn−1]

τ

mdecl := τ m(x1 : τ1, . . . , xn : τn) = e
cdecl := C extends B{f1 : τ1, . . . , fn : τn,

mdecl1, . . . , mdeclk}
prog := cdecl1, . . . , cdecln in e

Figure 15: Syntax of the Source Language

The source language is roughly Featherweight Java (FJ) [21]
enhanced with assignments and one dimensional arrays of
objects. Figure 15 shows the syntax. All local variables
and record fields are mutable. Variables are renamed such
that no two variables have the same name. A “new” expres-
sion is used to create objects instead of constructors as in
FJ. Expression cast[C[]](e) represents casting expression e
to an array of C. The semantics of the source language is
standard and is shown in the technical report.
The source-target translation performs several tasks, be-

sides lowering types and expressions: (1) It collects mem-
bers for each class, including those from super classes. (2)
It lifts method definitions to global functions, after adding
the “this” parameter. Therefore after translation, class dec-
larations have only method signatures, not method bodies.
(3) It creates vtables for classes.
The translation can be optimized, for example, to elim-

inate pairs of pack and open. We do not focus on those
optimizations at present.

45

Original Program New Program Side Conditions
(H ;V ; x) (H ;V ;V (x))
(H ;V ; c2r(C(v))) (H ;V ; v)
(H ;V ; new[τ]{l1 = v1, . . . , ln = vn}) (H ′; V ; () H ′ = H, (❀ {li = vi}n

i=1 (/∈ domain(H)
(H ;V ; (.li) (H ;V ; vi) H(() = {li = vi}n

i=1 1 ≤ i ≤ n

(H ;V ; (.li := v′
i in e) (H ′; V ; e)

{ ∀(′ �= (,H ′((′) = H((′)
H(() = {l1 = v1, . . . , ln = vn}
H ′(() = {l1 = v1, . . . , li = v′

i, . . . , ln = vn}
(H ;V ; new[v0, . . . , vn−1]

τ) (H ′; V ; () H ′ = H, (❀ [v0, . . . , vn−1]
τ (/∈ domain(H)

(H ;V ; ([i]) (H ;V ; vi) H(() = [v0, . . . , vn−1]
τ and 0 ≤ i ≤ n − 1

(H ;V ; ([i] := v′
i in e) (H ′; V ; e)

{
0 ≤ i < n ∀(′ �= (,H ′((′) = H((′)
H(() = [v0, . . . , vn−1]

τ

H ′(() = [v0, . . . , v
′
i, . . . , vn−1]

τ

(H ;V ; x : τ = v in e) (H ;V ′; e) V ′ = V, x = v
(H ;V ; x := v′ in e) (H ;V ′; e) V = V1, x = v, V2 V ′ = V1, x = v′, V2

(H ;V ; ([τ1, . . . , τm](v1, . . . , vn)) (H ;V ′; em[0τ/tvs])

{
H(() = fix g〈tvs〉(xi : τi)

n
i=1 : τ = em

V ′ = V, x1 = v1, . . . , xn = vn, g = (
(H ;V ; (α, x) = open(v) in e0) (H ;V ′; e0[τ/α]) v = pack τ as β � τu in (v′ : τ ′) V ′ = V, x = v′

(H ;V ; ifParent(v) then bind (α, x) in e1 else e2) (H ;V ′; e1[B/α]) v = tag(C) C extends B V ′ = V, x = tag(B)
(H ;V ; ifParent(v) then bind (α, x) in e1 else e2) (H ;V ; e2) v = tag(C) C does not extend any class.
(H ;V ; ifEqTagτ (v1, v2) then e1 else e2) (H ;V ; e1) v1 = tag(C1), v2 = tag(C2), C1 = C2

(H ;V ; ifEqTagτ (v1, v2) then e1 else e2) (H ;V ; e2) v1 = tag(C1), v2 = tag(C2), C1 �= C2

(H ;V ; error[τ]) (H ;V ; error[τ])

Figure 14: Evaluation Rules

Type Translation Class names are translated to existen-
tial types. Covariant array types are translated to existential
types that hide the actual element types.

|int| = int
|C| = ∃α � C. α
|array(C)| = ∃α � C.{{tag : Tag(α),

table : array(∃β � α. β)}}
|(τ1, . . . , τn) → τ | = (|τ1|, . . . , |τn|) → |τ |

Class and Program Translation A method declara-
tion is translated to a pair of a function label and a global
function definition with an explicit “this”. Suppose class C
implements a method m. The translation generates a new
label lm and translates the method as follows:

|τ m(x1 : τ1, . . . , xn : τn) = e,C| =
(lm, fix m〈 〉(this : ∃α � C. α,

x1 : |τ1|, . . . , xn : |τn|) : |τ | = |e|)
A class declaration is translated to a triple: a class dec-

laration in LILC , function definitions that correspond to
method declarations and the vtable (see Figure 16). For
convenience, we use vtableC to represent the label for C’s
vtable. If S is a sequence of bindings, then S ⊕ b means
“S, b” if S does not have the item bound in b. Otherwise,
S ⊕ b means replacing with b the corresponding entry in S.
“mtype(Θ,m,C)” means the type of method m in class C.
A program is translated to a set of new class declarations,

an initial heap that contains function definitions and vtables,
and a new main expression.

Θ = cdecl1, . . . , cdecln
|cdecli| = (newci, newmsi, vti) ∀1 ≤ i ≤ n
H0 = newms1, . . . , newmsn, vt1, . . . , vtn

|Θ in e| = (newc1, . . . , newcn;H0; •; |e|)
Expression Translation Figure 17 shows the transla-

tion of expressions. Each new variable introduced during

translation is unique. The translation of the new expression
“new C{fi = ei}n

i=1” creates a record of vtableC (vtable
of C) and fields f1, . . . , fn and then coerces the record to
an object. The translation of array store instructions in-
serts store checks: the object to be stored is first cast to
the target element type. The translation of array cast uses
“Arraycast”, which is similar to “Downcast” and is defined
in the technical report.

Theorem 5. The translation from the source language to
LILC preserves types. If P : τ holds in the source lan-
guage, then Σ0 |P | : |τ | holds in LILC , where Σ0 is the
environment for the initial heap (H0 in the program trans-
lation rule).

6. EXTENSIONS

6.1 Interfaces
The subclassing relation can extend to interfaces. If a

class C implements an interface I , then C � I . An object
of I has type ∃α � I. α.
A standard implementation uses an itable to store a tag

and function pointers for each interface a class implements,
and compares the tag of each itable entry with the tag of
the target interface at interface method invocation time2.
LILC can express the searching process with some ex-

tensions. The itable of class C can have an array type
array(∃γ � C.{{tag : Tag(γ),methods : RI(γ,C)}}), because
each entry in the itable represents a super interface of C.
Each entry is a record of two fields: a tag and a method
table. RI is an abstract type constructor for representing
method tables. RI(I, C) is equivalent to a record type that

2Some strategies create new objects with specialized itables
when objects are cast to interfaces. We do not think those
approaches are practical, because they have difficulties with
mutable fields and with casting the new objects to other
types.

46

|Topc| = (Topc{}, (), vtableTopc ❀ {tag = tag(Topc)})

|B| = (B : D{fieldsB , mtypesB}, mdefsB, vtableB ❀ {tag = tag(B), fpsB})
mdecli defines mi |mdecli, C| = (li,mbodyi) ∀1 ≤ i ≤ k

|C extends B{f1 : τ1, . . . , fn : τn, mdecl1, . . . ,mdeclk}| =
 C : B{fieldsB , f1 : |τ1|, . . . , fn : |τn|,mtypesB ⊕ m1 : |mtype(Θ,m1, C)| ⊕ . . . ⊕mk : |mtype(Θ,mk, C)|},

(l1 ❀ mbody1, . . . , lk ❀ mbodyk),
vtableC ❀ {tag = tag(C), fpsB ⊕m1 = l1 ⊕ . . .⊕ mk = lk}

Figure 16: Class Declaration Translation

|n| = n
|x| = x
|x : τ = e1 in e2| = x : |τ | = |e1| in |e2|
|x := e1 in e2| = x := |e1| in |e2|
|new C{fi = ei}n

i=1| = pack C as α � C in (C(new[R(C)]{vtable = vtableC , (fi = |ei|)ni=1}) : α)|e.fi| = (α, x) = open(|e|) in c2r(x).fi

|e1.fi := e2 in e3| = (α, x) = open(|e1|) in c2r(x).fi := |e2| in |e3|
|e.m(e1, . . . , en)| = (α, x) = open(|e|) in c2r(x).vtable.m(pack α as β � α in (x : β), |e1|, . . . |en|)
|new[e0, . . . , en−1]C | = pack C as α � C in

({tag = tag(C), table = new[|e0|, . . . , |en−1|]|C|} : {{tag : Tag(α), table : array(∃β � α. β)}})
|e1[e2]| = (α, x) = open(|e1|) in x.table[|e2|]
|e1[e2] := e3 in e4| = (α, x) = open(|e1|) in (β, y) = open(|e3|) in x.table[|e2|] := Downcast[α, β](x.tag, y) in |e4|
|cast[C](e)| = (α, x) = open(|e|) in Downcast[C,α](tag(C), x)
|cast[C[]](e)| = (α, x) = open(|e|) in Arraycast[C, α](tag(C), x)

Figure 17: Translation of Expressions

specifies all methods in I . If the tag of interface γ is equal
to the tag of target interface I , then RI(γ,C) can be refined
to RI(I,C) and methods can be fetched from it.

6.2 Binary Methods
A binary method takes a parameter that has the same

“exact” type as the “this” pointer. A typical example is
the equality operation. For example, “eq” in class Point
compares two objects of exact class Point. The subclasses
must override the “eq” method in the same spirit. The “eq”
method in Point2D compares two objects of exact Point2D.
With notions of “exact” types, LILC can express binary

methods easily. It can use a special annotation on param-
eters to indicate that those parameters have the same type
as “this”. The two parameters of a binary method in class
C, “this” and the annotated parameter, will be given type
C, not ∃α � C. α, because C’s subclasses have to override
the binary method. For example, the “eq” method in Point
will have type Point → Point → bool, and the “eq” method
in Point2D will have type Point2D → Point2D → bool.

7. RELATED WORK
The type-theoretic foundations for object-oriented lan-

guages have been studied extensively [6, 30, 4, 31, 2, 1,
15, 20, 13]. Most existing work focused on encoding classes
and objects to some form of the typed lambda-calculus with
records and functions. Many encodings use non-standard
implementation techniques for object-oriented features. Some
encodings introduce extra runtime overhead [2, 30, 4, 15].
Two complexities involved in class and object encodings

are recursion and inheritance. The recursive reference to
class C in the definition of C itself is often expressed by re-
cursive types. Bounded quantification (based on subtyping)
is introduced to express inheritance [7], but the full-scale

version has undecidable type checking [29, 18]3. The inter-
action with constructs such as recursive types, intersection
types and binary methods further complicates the type sys-
tem [17, 28, 5, 3].
The object calculi proposed by Abadi and Cardelli can

be used to express class-based languages [1]. Object calculi
use operations on objects as primitives, instead of those on
records. They are not suitable for addressing low-level de-
tails used by the compiler, such as object layout and vtables.
Some recent work aimed at efficient encodings: Glew’s

Fself [20], Crary’s OREI [13] and League et al.’s JFlint [24].
All three calculi and LILC express abstract views of objects
with type variables and express concrete views with record
types, but they use different mechanisms. To aid compari-
son, we use the LILC notation “ApproxR” in the explana-
tion. LILC uses coercion “c2r” to coerce an object of type α
to a record type ApproxR(α,C), if α � C. Fself combined
F-bounds with equi-recursive types in a “self” construc-
tor. An object of class C has type selfα.ApproxR(C,α).
When unfolded, the object has type α, and α is a subtype
of ApproxR(α,C). OREI used intersection types ∃α.α ∩
ApproxR(α,C) to express both views of objects of C. Either
view can be projected by coercions. JFlint used existentially
quantified row variables ∃tail.µself.ApproxR(self,C)+tail4

to type objects of C. The row variable tail abstracts possible
extensions in subclasses.
Among the four efficient calculi, only LILC can specify

(subclassing) bounds on type variables. As a result, LILC

can easily express covariant source array types with invari-
ant array types, and with minor extensions it can model

3A restricted variant (Kernel F<:) has decidable type check-
ing, but it is not very expressive.
4“+” is not a notation in League’s encoding. We use it to
express concatenation.

47

displays of super classes (for casting) and itables. Also,
LILC supports type cast implemented by walking through
tag chains. JFlint used sum types and a one-armed case
to represent cast. Each class must override a projection
function that can cast an object to the class, which is non-
standard. In another paper, Glew proposed a mechanism
to model hierarchical dispatch [19]. He introduced subtyp-
ing between tag types, which we think does not agree with
the convention that a tag uniquely identifies a class. Be-
cause of this subtyping, he had to use variance annotations
on tag types because tag creation and tag comparisons need
different subtyping behaviors.
Canning et al. separated inheritance and subtyping back

in 1990 [12]. Their work gave a denotational semantics to
inheritance. Objects were modeled as fixed points of re-
cursive records, and classes were fixed points of F-bounded
recursive functions, which made the encoding not as simple
or as natural as LILC .
Bruce used matching and match-bounded polymorphism to

express inheritance [4]. The denotational semantics, which
can be seen as an encoding, was based on F-bounded quan-
tification with fixed points at both the term level and the
type level. Matching is purely structural. No nominal sub-
classing relation is preserved.
Xi et al. presented an object encoding as an application

of guarded recursive datatype constructors [36]. Classes are
tags on messages. Subclassing does not imply subtyping.
Objects are interpreted as functions that can dispatch mes-
sages, which differs from the standard implementation of
objects as records. As a result, fetching fields and invoking
methods inherited from super classes have extra overhead.
Wright et al. compiled a subset of Java to a typed inter-

mediate language [35]. They relied on runtime type checks
to perform dynamic dispatch and type cast, and used un-
ordered records to represent interfaces.
Fisher et al. proposed an untyped calculus for compiling

class-based object-oriented languages [16]. They aimed to
support inheritance from unknown base classes. Therefore,
they used dictionary lookups for field and method access.
Necula et al. developed a certifying compiler called Spe-

cialJ for Java [11] as part of the Proof-Carrying Code frame-
work [27]. The compiler translates Java bytecode to x86 as-
sembly code with type annotation, and a safety proof that
certifies the code. The compiler handles a large subset of
Java, including exceptions. The type system in SpecialJ uses
only high-level abstractions such as classes and objects. Sub-
classing implies subtyping. SpecialJ does not have “exact”
type notions. As a result, its type system is unsound—the
unsafe dispatch shown in Section 2.3 would be well-typed in
SpecialJ [23].

8. CONCLUSION
This paper presents a simple typed intermediate language

LILC for type-preserving compilation of object-oriented lan-
guages. By preserving lightweight class names and restrict-
ing bounded quantification to subclassing, LILC reduces the
encoding complexity significantly, and it is able to faithfully
model standard implementation techniques for self applica-
tion, dynamic dispatch and type cast. It is sound and has
decidable type checking. We believe LILC is more suitable
as a starting point for practical compilers than traditional
encodings.

9. REFERENCES
[1] Martin Abadi and Luca Cardelli. A Theory of Objects.

Springer, New York, 1996.

[2] Mart́ın Abadi, Luca Cardelli, and Ramesh
Viswanathan. An interpretation of objects and object
types. In ACM Symposium on Principles of
Programming Languages, pages 396–409,
St. Petersburg Beach, Florida, 1996.

[3] Paolo Baldan, Giorgio Ghelli, and Alessandra
Raffaeta. Basic theory of f-bounded quantification.
Information and Computation, 153(1):173–237, 1999.

[4] Kim B. Bruce. A paradigmatic object-oriented
programming language: Design, static typing and
semantics. Journal of Functional Programming,
4(2):127–206, 1994.

[5] Peter Canning, William Cook, Walt Hill, Walter
Olthoff, and John C. Mitchell. F-bounded
quantification for object-oriented programming. In
Fourth International Conference on Functional
Programming Languages and Computer Architecture,
pages 273–280, 1989.

[6] Luca Cardelli. A semantics of multiple inheritance.
Information and Computation, 76(2/3):138–164,
February/March 1988.

[7] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. ACM
Computing Surveys, 17(4):471–522, 1985.

[8] Giuseppe Castagna and Benjamin C. Pierce.
Corrigendum: Decidable bounded quantification.
http://www.cis.upenn.edu/∼bcpierce/papers/fsubnew-
corrigendum.ps.

[9] Giuseppe Castagna and Benjamin C. Pierce.
Decidable bounded quantification. In 21st ACM
Symposium on Principles of Programming Languages,
pages 151–162. ACM Press, 1994.

[10] Juan Chen and David Tarditi. A simple typed
intermediate language for object-oriented languages.
Technical Report MSR-TR-2004-68, Microsoft
Corporation.
ftp://ftp.research.microsoft.com/pub/tr/TR-2004-
68.pdf.

[11] Christopher Colby, Peter Lee, George C. Necula, Fred
Blau, Ken Cline, and Mark Plesko. A certifying
compiler for Java. In ACM SIGPLAN Conference on
Programming Language Design and Implementation.
ACM Press, June 2000.

[12] William R. Cook, Walter Hill, and Peter S. Canning.
Inheritance is not subtyping. In 17th ACM Symposium
on Principles of Programming Languages, pages
125–135. ACM Press, 1990.

[13] Karl Crary. Simple, efficient object encoding using
intersection types. Technical report. CMU Technical
Report CMU-CS-99-100.

[14] Microsoft Corp. et al. Common Language
Infrastructure. 2002.
http://msdn.microsoft.com/net/ecma/.

[15] Kathleen Fisher. Type Systems for Object-oriented
Programming Languages. PhD thesis, Stanford
University, 1996.

[16] Kathleen Fisher, John H. Reppy, and Jon G. Riecke.
A calculus for compiling and linking classes. In
Proceedings of the 9th European Symposium on

48

Programming Languages and Systems, pages 135–149.
Springer-Verlag, 2000.

[17] Giorgio Ghelli. Recursive types are not conservative
over F≤. In Proceedings of the International
Conference on Typed Lambda Calculi and
Applications, pages 146–162. Springer-Verlag, 1993.

[18] Giorgio Ghelli. Divergence of F< type checking.
Theoretical Computer Science, 139(1–2):131–162,
1995.

[19] Neal Glew. Type dispatch for named hierarchical
types. In ACM SIGPLAN International Conf. on
Functional Programming, pages 172–182, 1999.

[20] Neal Glew. An efficient class and object encoding. In
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 311–324, 2000.

[21] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. on Programming
Languages and Systems, 23(3):396–450, 2001.

[22] S. Kamin. Inheritance in Smalltalk-80: a denotational
definition. In 15th ACM Symposium on Principles of
Programming Languages, pages 80–87. ACM Press,
1988.

[23] Christopher League. A Type-preserving Compiler
Infrastructure. PhD thesis, Yale University, 2002.

[24] Christopher League, Zhong Shao, and Valery Trifonov.
Type-preserving compilation of Featherweight Java.
ACM Trans. on Programming Languages and Systems,
24(2), March 2002.

[25] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 1999.

[26] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language.
ACM Trans. on Programming Languages and Systems,
21(3):527–568, May 1999.

[27] George Necula. Proof-Carrying Code. In ACM
Symposium on Principles of Programming Languages,
pages 106–119. ACM Press, 1997.

[28] Benjamin C. Pierce. Intersection types and bounded
polymorphism. In Typed Lambda Calculi and
Applications, volume 664, pages 346–360.
Springer-Verlag, 1993.

[29] Benjamin C. Pierce. Bounded quantification is
undecidable. In Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language
Design, pages 427–459. The MIT Press, MA, 1994.

[30] Benjamin C. Pierce and David N. Turner. Simple
type-theoretic foundations for object-oriented
programming. Journal of Functional Programming,
4(2):207–247, 1994.

[31] Didier Rémy. Programming objects with ml-art, an
extension to ml with abstract and record types. In
International Conference on Theoretical Aspects of
Computer Software, pages 321–346. Springer-Verlag,
1994.

[32] Zhong Shao. An overview of the FLINT/ML compiler.
In ACM SIGPLAN Workshop on Types in
Compilation, June 1997.

[33] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. TIL: A type-directed
optimizing compiler for ML. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 181–192, 1996.

[34] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

[35] Andrew K. Wright, Suresh Jagannathan, Cristian
Ungureanu, and Aaron Hertzmann. Compiling Java to
a typed lambda-calculus: A preliminary report. In
Types in Compilation, pages 9–27, 1998.

[36] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded
recursive datatype constructors. In ACM SIGPLAN
Symposium on Principles of Programming Languages,
pages 224–235, New Orleans, January 2003.

49

