Completeness of Axiomatic Semantics
(Supplement to CS263 Lecture Notes)

George Necula

September 26, 2001

We proved in class that the set of Hoare axioms is sound, that is, whenever
{A}c{B} we have that = { A}c{B}.

In this note, I am going to show a proof of completeness of the axiom system. The
goal is to show that if a triple is valid then there is a derivation for it:

F{Aje{B} = F{A}c{B}

A proof of completeness can also be found in Winskel’s but for a definition of =
{A}c{B} using denotational semantics. I am showing here a proof using operational
semantics. The proof here is a little trickier because the operational semantics is not
compositional.

1 Weakest Preconditions

A typical strategy for proving the completeness of a set of Hoare axioms is to introduce
the notion of weakest preconditions. The weakest precondition of a command ¢ with
respect to a postcondition B, written wp(c, b), is the assertion satisfied exactly by those
initial states that lead c¢ either to non-termination or to a final state that satisfies the
postcondition B. It should be clear by this definition that the weakest precondition is
unique up to equivalence of assertions.

We define the weakest preconditions inductively on the structure of commands, as
follows:

wp(skip, B) = B

wp(x = e, B) = Ble/z]

wp(cy; o, B) = wp(ey, wp(cz, B))

wp(if b then ¢y else ¢, B) = b= wp(cy, B) A =b = wp(cz, B)
wp(while bdo ¢, B) = A Fi.p(true)

where F}, . p is defined as:
Fye.p(A) =b= wp(c, A) N b= B

In the rest of this note I will drop the subscripts from Fj . g because they are easy to
infer from the context. As discussed in class, the above form of the weakest precondition
for the looping construct was chosen so that the following equivalence holds:

wp(while b do ¢, B) = b= wp(c, wp(while bdo ¢, B)) A b= B

It is important to note that A, F’(true) is not a legal assertion in our assertion
language. However, as it is proved in Winskel’s, if the language of assertions contains
multiplication, then there exists an equivalent legal assertion. Note that if the language
of assertions contains only multiplication with constants (Presburger arithmetic), then
it is not true that we can express all weakest preconditions! The proofs of these facts
are beyond the scope of the course and of this note.

Now we are going to prove formally that the inductive definition of wp above agrees
with our informal meaning of the weakest precondition. We state the required properties
as two lemmas. Before we turn to the proofs of these lemmas we show how they can be
used to derive the completeness of the axiom system.

Lemma 1 (wp is a precondition) For any command ¢ and assertion B, we have that
= {wp(e,B) } c¢{ B}, provided that the derivation of assertions is complete, i.e., = A
whenever = A.

Lemma 2 (wp is the weakest precondition) For any command ¢, assertion B, and
states o and o', if (o,¢) | ¢’ and o' = B then we have that o = wp(c, B).

Corollary 1 (Completeness) For any command ¢ and assertions A and B, if the
derivation of assertions is complete and = {A}c{ B} then - {A}c{B}.

PROOF OF COROLLARY 1: If = { A}c¢{ B} then for any state o = A we have (from
Lemma 2) that o = wp(c, B). Hence, by the definition of =, we have that = A =
wp(c, B). Now because we assume our derivation system for assertions (not triples)
to be complete, there must exist a derivation Dy :: = A = wp(c, b).

From Lemma 1 we have that there exists a derivation Dy :: = {wp(c, B) } ¢{ B }.
Now using the rule of consequence we can build the derivation D:
D, D,

D‘.I—A:>wp(c,B) - {wp(c, B)}c{B}

F{A}jc{B}

whose existence proves the corollary.

Now we turn to proving the two key lemmas about the weakest preconditions.

PrRoOOF OoF LEMMA 1: Pick an arbitrary command c. We have to show that there exists
a derivation of = { wp(c¢, B) } ¢{ B }. The proof is by induction on the structure of
the command ec.

Case: ¢ = skip. We have to show that = { B } skip { B }. This is an immediate
instance of the skip axiom.

Case: ¢ =z :=e. We have to show that - {[¢/z]B } x := e{ B }. This is again an
instance of the assignment axiom.

Case: ¢ = c¢1;¢. We must show that = { wp(ey, wp(ce, B)) } ¢1;¢0{ B }. By induc-
tion hypothesis on ¢; and ¢; we have that the derivations Dy :: - { wp(co, B) } 2 { B }
and Dy :: F {wp(cy, wp(ca, B)) }e1 { wp(co, B) } exist. Now we can use the rule of
sequencing to build the required derivation:

D, D,
) F{ wp(cr, wp(ce, B)) } 1 { wp(e, B)} F {wp(ce,B) }ea{ B}

F{ wp(cr, wp(cy, B)) }er;¢2{ B}

seq

Case: ¢ = if b then ¢, else ¢3. Let W = b = wp(cy, B) A b = wp(cy, B). We
have to show that

D:t+{W}if bthenc elsecy { B}

If we have the derivations Dy, D}, Dy and D) we can build D as follows:

D, D,1 D, D’2
FWAb= wp(c;,B) F{wple,,B)}a{B} FWA-b= wp(c, B) F{wp(ecy,B) }ea{B}
F{WAb}ta{B} F{W A=-b}c2{B}

if

= {W }if bthenc, else c; { B}

We can see that the existence of the derivations D] and D) is guaranteed by the
induction hypothesis on ¢; and ¢y respectively. What remains to show is the existence

of the derivations D; and D,. I'll only show the existence of Dy, the other case being
similar.

It is sufficient to show that o =W A b = wp(cy, B) for all 0 € 3. Then, from the
assumed completeness of the derivation system for assertions, we have the existence
Of Dl-

Now pick an arbitrary o such that o = W A b. From the definition of W we notice
that it must be the case that o = wp(ci, B), which is exactly what we need to
complete this case of the proof.

Case: ¢ = while b do c¢. As it has become the norm, the case for the looping
construct is the most interesting one. Recall that

wp(while bdo ¢, B) =W

such that W = b = wp(c, W) A =b = B. We have to show a derivation of
{W }while bdo c{ B}. We can obtain such a derivation if we are able to show that
derivations D;, D, and D3 exist:

Dl D2
FWAb= wp(c, W) F{wplc,W)}c{W}
cons
F{WAb}c{W}
while Dy
F{W }whilebdoc{W A —b} FWA-b= B
D:: cons

F{W }whilebdoc{B}

But D, clearly exists because of the induction hypothesis on c.

We can also show, using the unwinding property of W, that = W A b = wp(c, W)
and also that =W A =b = B. From here we use the completeness of the derivation
system for assertions and we obtain the required derivations D; and D5 respectively.

This completes the proof of the Lemma 1.
O

PrOOF OF LEMMA 2: The statement of Lemma 2 assumes the existence of an evaluation
derivation D :: (o,¢) |} o'. Since the evaluation judgment is not compositional we
must immediately think of an induction on the structure of the evaluation judgment
itself and not on the structure of the command.

Case: last rule in D is skip. We have in this case that ¢/ = o and that
wp(skip, B) = B. Thus the desired conclusion ¢’ = wp(skip, B) follows directly
from the assumption that o = B.

Case: last rule in D is assignment. We must prove that if o[z :=n] = B and
(0,€e) |} n then o = [e/x]B. This is exactly the statement of the substitution lemma
mentioned in class.

Case: last rule in D is the sequencing. In this case D has the following shape:

D, D,
(o,¢c0) Yo' (o' ¢co) I 0"
D= seq
(o,c15¢0) L 0"

We have the assumption ¢” = B. From the induction hypothesis on D, we have
that o' = wp(ce, B) and then from the induction hypothesis on D; we have that
o = wp(c1, wp(cq, B)), which proves this case.

Case: last rule in D is while false. Thus D must be of the form:

D,
(0,b) || false
D= whf
(o,whilebdoc) | o

Thus ¢/ = 0 and o = B (by assumption). We must show that o = W, where W is
the least solution to the fix-point equation

W=b= wp(c, W)AN-b= B (1)

To make progress we need to relate the evaluation of boolean expressions in a state to
the satisfiability of the boolean expression (viewed as an assertion) in the given state.
This is stated as Lemma 3 on page 6 and allows us to infer from D; that o = —b and
hence that o = —b = B. It is then easy to show that o = W, which is what we have
to show for this case of the proof. (This uses the fact that if o =0 then o = -b= A
for any assertion A.)

Case: last rule in D is while true. In this case D has the following shape:

D, 2
D (o,¢) § 0" (0" ,whilebdoc) | o
1 seq
(0,0) || true (0,c;while bdoc) | o
D = wht

(o,while bdoc) | o

Just as before, from D; and Lemma 3 we have that o = b. Thus we need to prove that
o = wp(c, W). We first apply the induction hypothesis on D3 (with the assumption
that o' = B) to deduce that o” = W. Then, we use this as an assumption and we
apply the induction hypothesis on D; to deduce that o = wp(c, W), which completes

this case of the proof.
O

2 Helper Lemmas

Lemma 3

1. If {(o,b) || true then o b
2. If (0,b) | false then o = —b

PrROOF OF LEMMA 3: The proof is easy by induction on the structure of the boolean

expression b.

U

