
#1

Type Systems Type Systems
for for

Resource Resource
ManagementManagement

#2

Take-Home Message

• Type systems can be used to track how
programs uses resources and APIs.

• Linear type systems track objects precisely
but forbid aliasing. They are like dataflow
analyses or operational semantics.

• Programmers are often poor at handling run-
time errors correctly.

#3

Linear Type Systems

• Type systems for managing resources are
usually linear

• From linear logic, where each hypothesis
must be used (discharged) exactly once

• Each important object in a linear type system
must be freed exactly once

• Each important object is known by a unique
name so that it can be tracked

#4

Linear Type System Drawbacks

• Perfect alias resolution is undecideable
• So we can never put an important object in

memory in a way that allows it to be aliased
– Or we might free it 0 or 2 times

• Thus unique names cannot be *p or “the
ship’s doctor” but must instead be “local
variable mysock” or “Worf”

#5

Typical Linear Type System

• Judgment: S1 ` cmd : S2

– S is the current set of resources
– Linear type systems are flow-sensitive
– Linear type systems behave like opsem

• Rules:

S1 ` new Namei : S2

{Namei} 2 S1 S2 = S1 [{Namei}

S1 ` c1 ; c2 : S3

S1 ` c1 : S2 S2 ` c2 : S3

S1 ` del Namei : S2

S2 = S1 \ {Namei}

#6

Topic:
VaultVault

• There are easily two Vault papers; I will skim.

#7

Enter the Vault

• Vault is a novel programming language
– Designed ~2001 by Manuel Fähndrich and Rob

DeLine at Microsoft Research
• Vault allows you to describe and statically

enforce resource management protocols
• Vault can prevent resource leaks and API

violations
• Vault is based on linear type systems

– In a linear type system, each resource must be
used exactly once.

#8

Tracking Individual Objects

Rule 1: “Close every socket that you open.”
Rule 2: “Do not read from a socket after closing it.”

Are we obeying the rules?

void ReadFromSocks (SOCKET s1, SOCKET s2) {
 …
read(s1,buf,n);
close(s1);
read(s2,buf,n);
close(s2);

}

#9

Vault Intution
• At every program point we will keep track of

exactly which sockets you have and whether
each one is opened or closed

• Every point = flow-sensitive analysis
• Sockets = all important resources
• Exactly which = “named objects” or “keys”
• Opened or closed = typestate of that object
• The type system is a dataflow analysis!

#10

Vault Heap Properties

• New notions: tracked and guarded objects
• Single pointer to each tracked object

– Tracked objects form linear regular trees
– No aliasing is possible with tracked objects
– Tracked objects have names (names = “keys”)

• Any number of pointers to guarded objects
– Many guarded objects inside one tracked object
– Not covered in this talk

• Goals:
– Model state of tracked objects statically
– Allow explicit but checked malloc/free

#11

Interfaces and Tracked Types
•Tracked Type Syntax: tracked(K) T

–Can do free and cast (unless type T is abstract)
–Can do normal operations on type T
–But only when key K is accessible (= we hold K)

•Vault functions change the key set
–Change spec = function pre- and post conditions
–Add key tracked(K) T foo() [new K];

–Remove key void bar(tracked(K) T) [-K];

–Change state void baz(tracked(K) T) [K(T)->(S)];

•Language primitives also change the key set
–Allocation expression adds a key new tracked T
–Deallocation expression removes a key free e

#12

Sockets in Vault
tracked(S) sock socket(domain, comm_style, int)
[new S @ raw];

void bind(tracked(S) sock, sockaddr)

[S @ raw -> named];

void close(tracked(S) sock) [-S @ _];

void receive(tracked(S) sock, byte[])

[S @ ready];

tracked(N) sock accept(tracked(S) sock,
sockaddr)

[S @ listening, new N @ ready];

void listen(tracked(S) sock, int)

[S @ named -> listening];

#13

Socket Client

• void work() { { }

 tracked sock s = socket(…); { S @ raw }

 bind(s, …); { S @ named }

 listen(s, …); { S @ listening }

 while(true) { { S @ listening }

 tracked sock t = accept(s); { S @ listening, N @ ready}

 receive(t, buf); { S @ listening, N @ ready}

 close(t); { S @ listening }

 } { S @ listening }

 close(s); { }

}

#14

Vault Typechecking
• A function’s key transformer annotation gives

its pre- and post-conditions
• On each path through a function, check

1. Pre-condition is transformed into post-condition
2. All proof obligations are satisfied

•Pre-conditions of other function calls
•Primitive operations (memory access, free)

•Avoid exponential blow-up (state explosion) by
–requiring uniform predicate at join points
–allowing only simple function specs

#15

Not In My BackVault

void work() { { }
 if (p) { }
 tracked sock s = socket(…); { S @ raw }
 else
 skip; { }
 printf(“hello world\n”); ERROR
}

void aie() {
 DoublyLinkedList * L = NULL; { }
 while (rand() % 100 > 50) { { }
 tracked sock s = socket(…); { S @ raw }
 L = PrependNode(s,L); ERROR
 }
}

All paths
entering a join-

point must
have the same
tracked set.

We could alias
s using L.

#16

Vault Evaluation

• Used for windows device drivers, directx d3d
programs, parser combinators …

• More complicated (non-linear) data structures
can be handled using the techniques in Paper
#2 (adoption and focus)

• Concurrency is difficult (convoluted locking)
• Annotation burden can be high
• “Great design, hard to use”

Q: TV (079 / 842)

• According to Dr.
McCoy in the 1967
Star Trek episode
"The Trouble With
Tribbles", tribbles are
born what?

Q: Music (198 / 842)

•Give both of the other place
names that occur in the song
Istanbul (Not Constantinople).
It was originally performed in
1953 by The Four Lads and was
covered by They Might Be
Giants in 1990.

Q: General (447 / 842)
• This is a three-part deductive argument

with an unstated assumption which
must be true for the premises to lead to
the conclusion. Examples include:
"There is no law against composing
music when one has no ideas
whatsoever. The music of Wagner,
therefore, is perfectly legal." or
advertisements in which cars are
draped with beautiful people.

Q: General (451 / 842)
• Which of the following well-phrased principles of physics is not a

formulation of one of Newton's Three Laws of Motion?
– A. "An object in motion will remain in motion and an object

at rest will remain at rest, unless acted upon by an
unbalanced force."

– B. "The acceleration of an object of constant mass is
proportional to the resultant force acting upon it."

– C. "The rate of change in momentum is proportional to the
net force acting on the object and takes place in the direction
of the force."

– D. "Two bodies attract each other with a force that is directly
proportional to the product of their masses and inversely
proportional to the square of the distance between them."

– E. "Whenever one body exerts force upon a second body, the
second body exerts an equal and opposite force upon the first
body."

#21

Topic:
Language Support ForLanguage Support For
Managing Resources InManaging Resources In
Exceptional SituationsExceptional Situations

• There are easily two WN papers; I will skim.

#22

Overarching Intuition

1. Use simple policies
– open/close, as in SLAM or Vault

2. Use a linear type system for sets of
resources

– Not for individual resources themselves!

3. Close all resources along all paths
– Even those for unexpected exceptions

4. Motivate The Problem
5. Propose A New Language Feature

#23

Defining Terms

• Exceptional Situations:
– Network problems, DB access errors, OS resource

exhaustion, …
• Typical Exception-Handling:

– Resend packet, show dialog box to user, …
– Application-specific, don’t care in this lecture

• Exception-Handling Mistakes (Bugs!):
– One example: a network error occurs and the

program forgets to release a database lock with
an external shared database, …

#24

The State Of The Art

• Most Common Exception Handlers
– #1. Do Nothing
– #2. Print Stack Trace, Abort Program

• Higher-level invariants should be restored,
interface requirements should be respected
– Aside from handling the exceptional situation,

code should clean up after itself
– What do we mean by “should”?

#25

Unhelpful Error Handling

#26

Error-Handling Errors

#27

Example Safety Policy

• Safety Policy Governing Java Streams
• One FSM per Stream object
• Edges = events in program
• Start in start state, end in accepting state

closed opened
new

close

read,
write,
flush,
…

#28

What’s Up In Real Life?

• Now knowing what we should be doing
• It is difficult for programmers to consider all

of the possible execution paths in the
presence of exceptions

• So there are often a few paths related to
exceptional conditions in which the safety
policy is violated

• Let’s see an example:

#29

Simplified Java Code

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close();
input.close();

Is this code
OK?

#30

Error Paths - Hazards

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close();
input.close();

#31

Fix It (?) With Try-Finally

try {
 Stream input = new Stream();
 Stream output = new Stream();
 while (data = input.read())
 output.write(data);
} finally {
 output.close();
 input.close();
}

#32

Fix It With Runtime Checks
input = output = null;
try {
 input = new Stream();
 output = new Stream();
 while (data = input.read())
 output.write(data);
} finally {
 if (output != null)
 try { output.close(); } catch (Exception e) { }
 if (input != null)
 try { input.close(); } catch (Exception e) { }
}

Note: the blue
exception-
handling code
is a big chunk
of the program!

#33

Finding Exception Handling Bugs

• We consider four generic resources
– Sockets, files, streams, database locks
– From a survey of Java code
– Usually simple two-state safety policies

• Program should release them along all paths,
even in exceptional situations

• Exceptional situations are rare …
• So use a static analysis to find mistakes

#34

Analysis Example Program

try {
Socket s = new Socket();
s.send(“GET index.html”);
s.close();

} finally { } // bug!

#35

Analysis Example

startnew socket

send

close

end

{ }

{socket}
{ }

{socket}
{socket}

{ } { }

#36

Analysis Example

startnew socket

send

close

end

{ }

{socket}
{ }

{socket}
{socket}

{ } { }

#37

Analysis Results

File, DB183783k… 18 others …

File, DB8183.9MTotal

Strm, File1261.6Meclipse

DB, Strm40107kjboss

Strm, DB37118kmckoi-sql

DB, File39162kportal

File17178kpcgen

DB322230kcompiere

File, Strm27362kptolemy2

File, Strm27319korg.aspectj

Forgotten
Resources

Methods with Exception-
Handling Mistakes

Lines of
Code

Program
Name

#38

Destructors and Finalizers

• Destructors – great for stack-allocated objects
– But error-handling contains arbitrary code
– e.g., 17 unique cleanups in undo (34 lines)

• Finalizers – widely reviled
– Called by GC: too late!
– No ordering guarantees
– Programs do not use them (13 user-defined ones

in 4M LOC, libraries inconsistent)

#39

Fix It With Flags
int f = 0; // flag tracks progress
try {
 openX(); f = 1; work();
 openY(); f = 2; work();
 openZ(); f = 3; work();
} finally {
 switch (f) { // note fall-through!
 case 3: try { closeZ(); } catch (Exception e) {}
 case 2: try { closeY(); } catch (Exception e) {}
 case 1: try { closeX(); } catch (Exception e) {}
 }
}

#40

Fix It With Flags (Ouch!)
int f = 0; // flag tracks progress
try {
 openX(); f = 1; work();
 if (…) { didY = true; openY(); f = 2; } work();
 openZ(); f = 3; work();
} finally {
 switch (f) { // note fall-through!
 case 3: try { closeZ(); } catch (Exception e) {}
 case 2: if (didY) { try { closeY(); } catch … }
 case 1: try { closeX(); } catch (Exception e) {}
 }
}

#41

New Feature Motivation

• Avoid forgetting obligations
• No static program restrictions
• Optional lexical scoping
• Optional early or arbitrary cleanup
• Database / Workflow notions:

– Either my actions all succeed (a1 a2 a3)
– Or they rollback (a1 a2 error c2 c1)
– Compensating transaction, linear saga

#42

Compensation Stacks

• Store cleanup code in run-time stacks
– First-class objects, pass them around

• After “action” succeeds, push “cleanup”
– “action” and “cleanup” are arbitrary code

(anonymous functions)

• Pop all cleanup code and run it (LIFO)
– When the stack goes out of scope
– At an uncaught exception
– Early, or when the stack is finalized

#43

Compensation Concepts

• Generalized destructors
– No made-up classes for local cleanup
– Can be called early, automatic bookkeeping
– Can have multiple stacks

• e.g., one for each request in a webserver

• Annotate interfaces to require them
– Cannot make a new socket without putting

“this.close()” on a stack of obligations

• Will be remembered along all paths
– Details elsewhere …

#44

Cinderella Story

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close();
intput.close();

#45

“Assembly Language”
CompStack CS = new CompStack();
try {
 Stream input, output;
 compensate { input = new Stream(); }
 with (CS) { input.close(); }
 compensate { output = new Stream(); }
 with (CS) { output.close(); }
 while (data = input.read())

 output.write(data);
} finally { CS.runAll(); }

#46

With Annoted Interfaces

CompStack CS = new CompStack();
try {
 Stream input = new Stream(CS);
 Stream output = new Stream(CS);
 while (data = input.read())

 output.write(data);
} finally { CS.runAll(); }

#47

Using Most Recent Stack

CompStack CS = new CompStack();
try {
 Stream input = new Stream();
 Stream output = new Stream();
 while (data = input.read())

 output.write(data);
} finally { CS.runAll(); }

#48

Using Current Scope Stack

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

 output.write(data);

#49

Cinderella 2 (Before)
int f = 0; // flag tracks progress
try {
 openX(); f = 1; work();
 if (…) { didY = true; openY(); f = 2; } work();
 openZ(); f = 3; work();
} finally {
 switch (f) { // note fall-through!
 case 3: try { closeZ(); } catch (Exception e) {}
 case 2: if (didY) { try { closeY(); } catch … }
 case 1: try { closeX(); } catch (Exception e) {}
 }
}

#50

Cinderella 2 (After)
compensate { openX(); }
with { closeX(); }
work();
if (…) compensate { openY(); }

with { closeY(); }
work();
compensate { openZ(); }
with { closeZ(); }
work();
// using the “current scope stack” by default

#51

Modeling Language

e ::= skip
| e1 ; e2

| if F then e1 else e2

| while F do e

| let ci = new CS() in e [+ CSi]
| compensate aj with bj using ci

| store ci [- CSi]
| let ci = load in e
| run ci [- CSi]
| runEarly aj from ci

Each compensation stack
comes with a unique
name “i” based on its

allocation site.

#52

Typing Judgment

• Live stack = stack that may have un-run
compensating actions

• Dead stack = stack that definitely has no un-run
compensating actions

• Judgment:
C, D ` e : C’, D’

• Expression e typechecks in the context of live
compensation stacks C and unused (dead)
compensation stacks D and after executing e the
new set of live stacks is C’ and the new set of dead
stacks is D’

#53

Typing Rules

C, D ` e1 ; e2 : C2, D2

C, D ` e1 : C1, D1
 C1, D1 ` e2 : C2, D2

C, D ` skip : C, D

C, D ` if F then e1 else e2 : C1 [C2, D1 Å D2

C, D ` e1 : C1, D1 C, D ` e2 : C2, D2

C1, D1 ` while F do e : C [C1, D Å D1

C1, D1 ` e1 : C2, D2 C1 [D1 = C2 [D2

#54

More Typing Rules

C, D ` compensate aj with bj using ci : C, D

i 2 C

C1, D1 ` let ci = new CS() in e : C2, D3

C1, D1 [{i} ` e : C2, D2 D3 = D2 \ {i}

C, D ` compensate aj with bj using ci : C [{i}, D2

D2 = D \ {i}

Not syntax-directed!
Why is this OK?

#55

Most Typing Rules

C, D ` run ci : C2, D [{i}

C2 = C \ {i}

C, D ` run ci : C, D

i 2 D

C, D ` runEarly aj from ci : C, D

i 2 C [D

Load is similar to “let/new”

Store is similar to “run”

#56

Case Studies

• Extend Java with compensation stacks
• Annotate key interfaces (File, DB, …)
• Annotate existing programs to use

compensation stacks
– For library resources
– And for unique cleanup actions
– No new exception handlers!

• Two studies: expressiveness, reliability

#57

Brown’s undo

• Provides operator-level time travel
– Networked, logging SMTP and IMAP proxy

• 35,412 lines of Java, 128 change sites
– Five- and three-step sagas
– Complicated, unique cleanups with their own

exception handling and synchronization

• Results
– 225 lines shorter (~1%)
– No measurable perf cost (1/2 std dev)

#58

Sun’s petstore

• “Amazon.com lite” plus inventory
– Raises 150 exceptions over 3,900 requests
– Avg Response: 52.06ms (std dev 100ms)

• 34,608 lines of Java, 123 change sites
– Two hours of work
– Three simultaneous resources (DB)

• Results:
– 168 lines shorter (~0.5%)
– 0 such exceptions over 3,900 requests
– Avg Response: 43.44ms (std dev 77ms)

#59

Compensation Conclusions

• Combines static and dynamic analyses
– CompStacks are tracked statically
– Individual obligations are handled dynamically

• Easy to use for real-world programs
• Related to linear type systems

• Meh, seems to work.

#60

Homework

• Project Writeup Due Tuesday Nov 25!
– Need help? Stop by my office or send email.

• Project Presentation Due
– Dec 02 or Dec 04, ...

