DAD, WHAT'S \T
LIKE BEING A

AT NORTH POLE UNIVER-
STY, A YOUNG GRAD S
DENT CALLED MICHOLAS
EYCELS IN MANUFAC TU-
RbG ENGINEERING, CHILD
PSYCHOLOGY AND ETHIC
A BOLD AND OUTSPOKEN
STUDENT, THE RADICAL
IDEAS, PROPOSED IN HIS...

WELL, ITS NOT

TOO DIFFERENT

FRoM BEING
B KID...

LEXCEPT YOU'RE MDRE
ATTACMED TO YOUR TONS.

THESIS QUTLINE, TITLED
" AL CHAMGE THROUGH
FEWARD BEHAVIOR N PEE
ADOLESCENCE,"” SCARE
HIS FACULTY ADVISORS,
THEY ENCOURAGE HIM TO
FOCLS O THE EMGINEE-
RiNG ASPECTS OF HIS
FPROPOSAL, SPECIFICALLY
HIS SO-CALLED "HOVE-
RiNG CARIBOLM SYSTEM,
o

FREUSTRATED AND CER-
TAIN HIS [DEAS WOULD
NEVER &0 BEYOND SOME
JOURMAL NOBODY EVER
FEADS IF HE STAYED,
MNICHOLAS QUITS TUHE PHD
PROGREAM, WITH A HAND-
FUL OF UNDERGRADS,

HE SETS OUT TO CHANGE

THE WORLD, NOT QUITE &

CERTAIN HOW HELL DOT

YEARS LATER, REFLEC -
TING ON HIS LIFE, HigH
UPON THE MANHATTAN
HEADQUARTERS OF HIS
CORPORATE FULANTRO-
PIC EMPIRE, MICHOLAS
HAS A SUDDEN CRAVING
FOR RAMEN NOODLES,

Take-Home Message

e Type systems can be used to track how
programs uses resources and APIs.

e Linear type systems track objects precisely
but forbid aliasing. They are like dataflow
analyses or operational semantics.

e Programmers are often poor at handling run-
time errors correctly.

#2

Linear Type Systems

« Type systems for managing resources are
usually linear

e From linear logic, where each hypothesis
must be used (discharged) exactly once

o Each important object in a linear type system
must be freed exactly once

e Each important object is known by a unique
name so that it can be tracked

#3

Linear Type System Drawbacks

e Perfect alias resolution is undecideable

e SO0 we can never put an important object in
memory in a way that allows it to be aliased
- Or we might free it 0 or 2 times

e Thus unique names cannot be *p or “the

ship’s doctor” but must instead be “local |
Var]able mysock” or “WOI‘f” .

Typical Linear Type System

« Judgment: S,Fcmd: S,

- S is the current set of resources
- Linear type systems are flow-sensitive
- Linear type systems behave like opsem

» Rules: {Name} €S, S, =S, U {Name}

S, new Name, : S,

S, Fc, S, S,F¢c,: S, S, =5, \ {Name }

S, Fc ;¢ S, S, I del Name, : S,

#5

e There are easily two Vault papers; | will skim.

#6

Enter the Vault

« Vault is a novel programming language

- Designed ~2001 by Manuel Fahndrich and Rob
DelLine at Microsoft Research

« Vault allows you to describe and statically
enforce resource management protocols

e Vault can prevent resource leaks and API
violations
e Vault is based on linear type systems

- In a linear type system, each resource must be
used exactly once.

#7

Tracking Individual Objects

Rule 1: “Close every socket that you open.”
Rule 2: “Do not read from a socket after closing it.”

void ReadFromSocks (SOCKET sl, SOCKET s2) {

read(sl,buf,n) ;
close(sl) ;
read(s2,buf,n) ;
close (s2) ;

}

Are we obeying the rules?

#8

Vault Intution

e At every program point we will keep track of
exactly which sockets you have and whether
each one is opened or closed

e Every point = flow-sensitive analysis

» Sockets = all important resources

e Exactly which = “named objects” or “keys”
e Opened or closed = typestate of that object
e The type system is a dataflow analysis!

#9

Vault Heap Properties

New notions: tracked and guarded objects

Single pointer to each tracked object

- Tracked objects form linear regular trees

- No aliasing is possible with tracked objects

- Tracked objects have names (names = “keys”)
Any number of pointers to guarded objects
- Many guarded objects inside one tracked object
- Not covered in this talk

Goals:
- Model state of tracked objects statically
- Allow explicit but checked malloc/free

#10

Interfaces and Tracked Types

e Tracked Type Syntax: tracked(K) T
-Can do free and cast (unless type T is abstract)
-Can do normal operations on type T
-But only when key K is accessible (= we hold K)

«Vault functions change the key set

-Change spec = function pre- and post conditions

-Add key tracked(K) T foo() [new K];
-Remove key void bar(tracked(K) T) [-KI;
-Change state void baz(tracked(K) T) [K(T)->(S)1;

eLanguage primitives also change the key set
-Allocation expression adds a key new tracked T
-Deallocation expression removes a key free e

#11

Sockets in Vault

tracked(S) sock socket(domain, comm style, int)
[new S @ raw];

void bind(tracked (S) sock, sockaddr)
[S @ raw -> named];

void listen (tracked(S) sock, int)
[S @ named -> listening];

tracked (N) sock accept(tracked(S) sock,
sockaddr)

[S @ listening, new N @ ready];

void receive (tracked(S) sock, byte[])
[S @ ready];

void close(tracked(S) sock) [-S @ 1,

#12

Socket Client

e void work() {

tracked sock s = socket(...);

bind(s, ...);

listen(s, ...);

while(true) {
tracked sock t = accept(s);
receive(t, buf);
close(t);

}

close(s);

{1}

{S@raw}

{S @ named }

{S @ listening }

{S @ listening }

{S @ listening, N @ ready}
{S @ listening, N @ ready}
{S @ listening }

{S @ listening }

i}

#13

Vault Typechecking

A function’s key transformer annotation gives
its pre- and post-conditions
e On each path through a function, check

1. Pre-condition is transformed into post-condition

2. All proof obligations are satisfied
«Pre-conditions of other function calls
«Primitive operations (memory access, free)

e Avoid exponential blow-up (state explosion) by
-requiring uniform predicate at join points
-allowing only simple function specs

#14

Not In My BackVault

void work() {

}

if (p)

tracked sock s = socket(...);
else

skip;
printf(“hello world\n”);

void aie() {

}

DoublyLinkedList * L = NULL;

while (rand() % 100 > 50) {
tracked sock s = socket(...);
L = PrependNode(s,L);

}

{3}

{3}

{S@raw}

(1 All paths A
entering a join-

ERROR point must
have the same

tracked set. Y,

{3

{3}

{S@raw}

ERRO B
We could alias

s using L.

_

#15

Vault Evaluation

o Used for windows device drivers, directx d3d
programs, parser combinators ...

e More complicated (non-linear) data structures
can be handled using the techniques in Paper
#2 (adoption and focus)

e Concurrency is difficult (convoluted locking)
e Annotation burden can be high
e “Great design, hard to use”

#16

Q: TV (079 / 842)

 According to Dr.

"“'* l'l‘i uf

McCoy in the 1967 P ””
Star Trek episode r—
"The Trouble With

Tribbles”, tribbles are
born what?

Q: Music (198 / 842)

* Give both of the other place
names that occur in the song
Istanbul (Not Constantinople).
It was originally performed in
1953 by The Four Lads and was
covered by They Might Be
Giants in 1990.

Q: General (447 / 842)

e This is a three-part deductive argument
with an unstated assumption which
must be true for the premises to lead to
the conclusion. Examples include:
“There is no law against composing
music when one has no ideas
whatsoever. The music of Wagner,
therefore, is perfectly legal.” or
advertisements in which cars are
draped with beautiful people.

Q: General (451 / 842)

 Which of the following well-phrased principles of physics is not a
formulation of one of Newton's Three Laws of Motion?

A. "An object in motion will remain in motion and an object
at rest will remain at rest, unless acted upon by an
unbalanced force.”

B. "The acceleration of an object of constant mass is
proportional to the resultant force acting upon it."

C. "The rate of change in momentum is proportional to the
net force acting on the object and takes place in the direction
of the force.”

D. "Two bodies attract each other with a force that is directly
proportional to the product of their masses and inversely
proportional to the square of the distance between them.”

E. "Whenever one body exerts force upon a second body, the

second body exerts an equal and opposite force upon the first
body."

Topic:
Language Support For
Managing Resources In
Exceptional Situations

e There are easily two WN papers; | will skim.

#21

Overarching Intuition

1. Use simple policies
- open/close, as in SLAM or Vault

2. Use a linear type system for sets of
resources

- Not for individual resources themselves!

3. Close all resources along all paths
- Even those for unexpected exceptions

4. Motivate The Problem
5. Propose A New Language Feature

#22

Defining Terms

e Exceptional Situations:

- Network problems, DB access errors, OS resource
exhaustion, ...

e Typical Exception-Handling:

- Resend packet, show dialog box to user, ...

- Application-specific, don’t care in this lecture
e Exception-Handling Mistakes (Bugs!):

- One example: a network error occurs and the
program forgets to release a database lock with
an external shared database, ...

#23

The State Of The Art

e Most Common Exception Handlers
- #1. Do Nothing
- #2. Print Stack Trace, Abort Program

e Higher-level invariants should be restored,
interface requirements should be respected

- Aside from handling the exceptional situation,
code should clean up after itself

- What do we mean by “should”?

#24

= Unhelpful Error Handling

Q &n exception has been caught while processing the refactaring Maovwe’,

Reason: Alert
]

A network error has occured. This computer's
Internet connection appears to be online. {-66559).

oK, | << Dietails I li Network Diagnostics) E—Gﬁ—a

e ——— -
Octoshape Launcher Lib x|
c Error fetching resource list from repository. Q Could not find & native to exscute.
Feason: |
IJO exception occurred: Connection refused: | HATE YOU ok
StagCom Windows Application il

NO! - Bad Userilt

You've been warned 3 times that this file does not exist,
Mow wiou'ye made us cakch this waorthless exception and we're upset,

Do niok dothis again,

x|

Q Communication Error with Programmer

L.;

Microsoft PhotoDraw

IUnable to save the file,
There may not be enough memary ko complete this operation, ar another problem may exist,
Please save your work, restart Microsoft PhotoDraw, and try again.

Bink Converter [x|

QuickTime couldn't open this file, probably because it was a
long filename or used unusual charackers,

4=

Microsoft Office Outiook X! Error Deleting File or Folder

e : : You might have to rename or move this File iF wou want QT
@ Cannot delete FilePicker: There is nok enough free disk space, ko read it
Delete one or more files to free disk space, and then kry again, Yes, this is ridiculous.

S B e L E— e e . A L E— N B B B B P T V']

Was this information helpful?

Better Ingredienis
Better Pizza

Restaurant Locator

¥Locator Home *intermational Locator

* Indicates required field

Street *: il

City: Internal error
State: | oy
Zip Code *: (45221 & internal error occurred while showing an internal error, —
You are recommended to exik the workbench,
Subsequent errors may happen and may terminate the workbench without warning,

See the .log file for more details.

We canmot process vour address, Pleage venify that it is comvect amd oy
again. If the problem persists, please call customer service ar the
nmaber below.

Mo vestamrants were foumd within 1000 miles. Verify vour address and
Iy again.

Microsoft Money

Do wou want ko exit the workbench?

\!{) An error occurred, but Money ran out of memory while trying to retrieve and display details about what happened.

Example Safety Policy

o Safety Policy Governing Java Streams

e One FSM per Stream object

e Edges = events in program

 Start in start state, end in accepting state

read,

new write,
opened £flush,

close

#27

What’s Up In Real Life?

 Now knowing what we should be doing

e It is difficult for programmers to consider all
of the possible execution paths in the
presence of exceptions

e S0 there are often a few paths related to
exceptional conditions in which the safety
policy is violated

e Let’s see an example:

#28

Simplified Java Code

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close(); _
input.close(); e

)
Is this code
OK?

#29

Error Paths - Hazards

Stream input = new Stream();

Stream output = new Stream();

while (data = input.read())
output.write(data);

output.close();

input.close();

#30

Fix It (?) With Try-Finally

try {
Stream input = new Stream();

Stream output = new Stream();
while (data = input.read())
output.write(data);
} finally {
output.close();
input.close();

}

#31

Fix It With Runtime Checks

input = output = null; .
try { Note: the blue
input = new Stream(); exception-

output = new Stream(); |handling code

while (data = input.read()) |; .
output.write(data); is a big chunk

} finally { of the program!
if (output != null)
try { output.close(); } catch (Exception e) { }
if (input != null)
try { input.close(); } catch (Exception e) { }
}

#32

Finding Exception Handling Bugs

« We consider four generic resources
- Sockets, files, streams, database locks
- From a survey of Java code
- Usually simple two-state safety policies

e Program should release them along all paths,
even in exceptional situations

e Exceptional situations are rare ...
e SO use a static analysis to find mistakes

#33

Analysis Example Program

try {
Socket s = new Socket();

s.send(“GET index.html”);
s.close();
} finally { } // bug!

Analysis Example

new socket start]
l{socket}
send
{socket}
close fsocket}

{}l l{}

Analysis Example

Newd

Irt]

fsocket}

#36

Analysis Results

Program Lines of
Name Code
jboss 107k
mckoi-sql 118k
portal 162k
pcgen 178k
compiere 230k
org.aspectj 319k
ptolemy2 362k
eclipse 1.6M
. 18 others .. 783k
Total 3.9M

Methods with Exception-
Handling Mistakes

40
37
39
17

27
27

Forgotten
Resources

DB, Strm

Strm, DB

DB, File

File

DB

File, Strm

File, Strm

Strm, File

File, DB

File, DB

#37

Destructors and Finalizers

e Destructors - great for stack-allocated objects
- But error-handling contains arbitrary code
- e.g., 17 unique cleanups in undo (34 lines)

e Finalizers - widely reviled
- Called by GC: too late!

- No ordering guarantees

- Programs do not use them (13 user-defined ones
in 4M LOC, libraries inconsistent)

#38

Fix It With Flags

int f =0; // flag tracks progress

openX(); f = 1; work();

openY(); f = 2; work();

openZ(); f = 3; work();

} finally {

switch (f) { // note fall-through!
case 3: try { closeZ(); } catch (Exception e) {}
case 2: try { closeY(); } catch (Exception e) {}
case 1: try { closeX(); } catch (Exception e) {}

3
3

#39

Fix It With Flags (Ouch!)

intf =0; // flag tracks progress
try {
openX(); f = 1; work();
if (...) { didY = true; openY(); f = 2; } work();
openZ(); f = 3; work();
} finally {
switch (f) { // note fall-through!
case 3: try { closeZ(); } catch (Exception e) {}
case 2: if (didY) { try { closeY(); } catch ... }
case 1: try { closeX(); } catch (Exception e) {}

}
}

#40

New Feature Motivation

e Avoid forgetting obligations

e No static program restrictions

e Optional lexical scoping

e Optional early or arbitrary cleanup

o Database / Workflow notions:
- Either my actions all succeed (a1 a2 a3)
- Or they rollback (a1 a2 error c2 c1)
- Compensating transaction, linear saga

#41

Compensation Stacks

e Store cleanup code in run-time stacks
- First-class objects, pass them around

o After “action” succeeds, push “cleanup”

- “action” and “cleanup” are arbitrary code
(anonymous functions)

e Pop all cleanup code and run it (LIFO)
- When the stack goes out of scope
- At an uncaught exception
- Early, or when the stack is finalized

#42

Compensation Concepts

o Generalized destructors
- No made-up classes for local cleanup
- Can be called early, automatic bookkeeping

- Can have multiple stacks
e €.g., one for each request in a webserver

e Annotate interfaces to require them

- Cannot make a new socket without putting
“this.close()” on a stack of obligations

o Will be remembered along all paths
- Details elsewhere ...

#43

Cinderella Story

Stream input = new Stream();

Stream output = new Stream();

while (data = input.read())
output.write(data);

output.close();

intput.close();

#44

“Assembly Language”

CompStack CS = new CompStack();

try {
Stream input, output;
compensate { input = new Stream(); }
with (CS) { input.close(); }
compensate { output = new Stream(); }
with (CS) { output.close(); }
while (data = input.read())

output.write(data);
} finally { CS.runAll(); }

#45

With Annoted Interfaces

CompStack CS = new CompStack();
try {
Stream input = new Stream(CS);
Stream output = new Stream(CS);
while (data = input.read())
output.write(data);
} finally { CS.runAll(); }

#46

Using Most Recent Stack

CompStack CS = new CompStack();
try {
Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())
output.write(data);
} finally { CS.runAll(); }

#H47

Using Current Scope Stack

Stream input = new Stream();

Stream output = new Stream();

while (data = input.read())
output.write(data);

#48

Cinderella 2 (Before)

int f =0; // flag tracks progress
try {
openX(); f = 1; work();
if (...) { didY = true; openY(); f = 2; } work();
openZ(); f = 3; work();
} finally {
switch (f) { // note fall-through!
case 3: try { closeZ(); } catch (Exception e) {}
case 2: if (didY) { try { closeY(); } catch ... }
case 1: try { closeX(); } catch (Exception e) {}

}
}

#49

Cinderella 2 (After)

compensate { openX(); }

with { closeX(); }

work();

if (...) compensate { openY(); }
with { closeY(); }

work();

compensate { openZ(); }

with { closeZ(); }

work();

// using the “current scope stack” by default

#50

Modeling Language

_—

co= oki Each compensation stack
€ ..=5KIp comes with a unique
e :e name “i” based on its
19 <2 :)
allocation site.

if % then e, else e, ~—
while % do e

let ¢, = new CS() in e [+ CS;]
compensate a; with b; using ¢

store C. [- CS,]
let c. = load in e

run c. [- CS,]

runkarly a, from ¢,
#51

Typing Judgment

Live stack = stack that may have un-run
compensating actions

Dead stack = stack that definitely has no un-run
compensating actions

Judgment:

C,DFe:C,D’

Expression e typechecks in the context of live
compensation stacks C and unused (dead)
compensation stacks D and after executing e the
new set of live stacks is C’ and the new set of dead
stacks is D’

#52

Typing Rules

C,DEskip:C,D

C,DrFe :C,D C,D Fe :C,D
C,DFe ;e :C,D,

C,DFe :C, D, C,DFe,: C, D,

C,DFif % thene,elsee,: C,UC,, D,ND,

C,D ke :C,D, C,uD,=C,uD,

C,, D,-whilesk doe:CuUC,DnND.

#53

More Typing Rules

C,D U{i}Fe:C,D, D, =D, \ {i}

C,D, Fletc,=new(CS()ine: C, D,

1eC

C, D compensate a; with b, using ¢, : C, D

Not syntax-directed! 7
Why is this OK?

D, =D\ {i}

C, D = compensate a; with b; using ¢; : C U {i}, D,

#54

Most Typing Rules

ieCuUD
C, D+ runkarly a; fromc; : C, D

C,=C\ {i} icD

C,DFrunc :C,, DuU{i} C,DFrunc :C, D

D Load is similar to “let/new” 7

D Store is similar to “run” 7

#55

Case Studies

e Extend Java with compensation stacks
o Annotate key interfaces (File, DB, ...)

e Annotate existing programs to use
compensation stacks
- For library resources
- And for unique cleanup actions
- No new exception handlers!

e Two studies: expressiveness, reliability

#56

Brown’s undo

e Provides operator-level time travel
- Networked, logging SMTP and IMAP proxy

e 35,412 lines of Java, 128 change sites
- Five- and three-step sagas

- Complicated, unique cleanups with their own
exception handling and synchronization

e Results
- 225 lines shorter (~1%)
- No measurable perf cost (1/2 std dev)

#57

Sun’s petstore

e “Amazon.com lite” plus inventory

- Raises 150 exceptions over 3,900 requests
- Avg Response: 52.06ms (std dev 100ms)
e 34,608 lines of Java, 123 change sites
- Two hours of work
- Three simultaneous resources (DB)
e Results:
- 168 lines shorter (~0.5%)
- 0 such exceptions over 3,900 requests
- Avg Response: 43.44ms (std dev 7/ms)

#58

Compensation Conclusions

e Combines static and dynamic analyses
- CompStacks are tracked statically
- Individual obligations are handled dynamically

e Easy to use for real-world programs
e Related to linear type systems

e Meh, seems to work.

#59

Homework

e Project Writeup Due Tuesday Nov 25!
- Need help? Stop by my office or send email.

e Project Presentation Due
- Dec 02 or Dec 04, ...

#60

