

The Need for a Calculus

- There are many 00 languages with many combinations of features
- We would like to study these features formally in the context of some primitive language
- Small, essential, flexible
- We want a " λ-calculus" or "IMP" for objects

Object Calculi Summary

- As in λ-calculi we have
- operational semantics
- denotational semantics
- type systems
- type inference algorithms
- guidance for language design
- We will actually present a family of calculi
- typed and untyped
- first-order and higher-order type systems
- We start with an untyped calculus

Cunning Plan: Focus On Objects

- A Calculus For 00
- Operational Semantics
- Type System
- Expressive Power
- Encoding OO Features

Why Not Use λ-Calculus for 0 ?

- We could define some aspects of OO languages using λ-calculus
e.g., the operational semantics by means of a translation to λ-calculus
- But then the notion of object be secondary

Functions would still be first-class citizens

- Some typing considerations of OO languages are hard to express in λ-calculus
- i.e., object-orientation is not simply "syntactic sugar"

An Untyped Object Calculus

- An object is a collection of methods
- Their order does not matter
- Each method has
- A bound variable for "self" (denoting the host object)
- A body that produces a result
- The only operations on objects are:
- Method invocations
- Method update

Untyped Object Calculus Syntax

- Syntax:

```
a,b ::= x
- variables
| \(\left[m_{i}=\varsigma(x) b_{i}\right] \quad\) - object constructor - \(\varsigma\) is a variant of Greek letter \(\sigma\) - x is the local name for "self"
| a.m
- method invocation
- no arguments (just the self)
| a.m \(\leftarrow \varsigma(x) b\)
- method update
- this is an expression!
- the result is a copy of the object with one method changed
```

- This is called the untyped ς-calculus (Abadi \& Cardelli)

First Examples

- An object o with two methods m_{1} and m_{2}
- m_{1} returns an empty object
- m_{2} invokes m_{1} through self

$$
\mathrm{o}=\left[\mathrm{m}_{1}=\varsigma(\mathrm{x})[], \mathrm{m}_{2}=\varsigma(\mathrm{x}) \mathrm{x} \cdot \mathrm{~m}_{1}\right]
$$

- A bit cell with three methods: value, set and reset
- value returns the value of the bit (0 initially)
- set sets the value to 1 , reset sets the value to 0
- models state without $\lambda /$ IMP (objects are primary)
$b=[$ value $=\varsigma(x) .0$,
set $=\varsigma(x) . x$.value $\leftarrow \varsigma(y) .1$,
reset $=\varsigma(x) . x$.value $\leftarrow \varsigma(y) .0$]

Operational Semantics

- $a \rightarrow b$ means that a reduces in one step to b
- The rules are: (let o be the object $\left[m_{i}=\varsigma(x) . b_{i}\right]$)

$$
\begin{array}{ll}
\text { o.m }_{i} & \rightarrow[o / x] b_{i} \\
o \cdot m_{k} \leftarrow \varsigma(y) \cdot b & \rightarrow\left[m_{k}=\varsigma(y) \cdot b, m_{i}=\varsigma(x) \cdot b_{i}\right] \\
& (i \in\{1, \ldots, n\}-\{k\})
\end{array}
$$

- We are dealing with a calculus of objects
- This is a deterministic semantics (has the ChurchRosser or "diamond" property)

Expressiveness

- A calculus based only on methods with "self"
- How expressive is this language? Let's see.
- Can we encode languages with fields? Yes.
- Can we encode classes and subclassing? Hmm.
- Can we encode λ-calculus? Hmm.
- Encoding fields
- Fields are methods that do not use self

Field access "o.f" is translated directly

- to method invocation "o.f"
- Field update "o.f $\leftarrow e$ " is translated to "o.f $\leftarrow \varsigma(x)$ e"
- We will drop the $\varsigma(x)$ from field definitions and updates

As Expressive As λ

- Encoding functions

- A function is an object with two methods
- arg - the actual value of the argument
- val - the body of the function
- A function call updates "arg" and invokes "val"
- A conversion from λ-calculus expressions
$\underline{x}=x . a r g \quad$ (read the actual argument)
$\underline{\mathrm{e}}_{1} \underline{\mathrm{e}}_{2}=\left(\underline{\mathrm{e}}_{1} \cdot \arg \leftarrow \varsigma(\mathrm{y}) \underline{\mathrm{e}}_{2}\right) \cdot \mathrm{val}$
$\lambda \bar{x} . \bar{e}=[\arg =\varsigma(y) y . a r g, v a l=\varsigma(x) . \underline{e}]$
- The initial value of the argument is undefined
- From now on we use λ notation in addition to ς

λ-calculus into ς-calculus

- Consider the conversion of $(\lambda x . x) 5$

Let $o=[\arg =\varsigma(z) z . a r g, v a l=\varsigma(x) x . a r g]$
$(\lambda x . x) 5=(0 . \arg \leftarrow \varsigma(y) 5)$.val

- Consider now the evaluation of this latter ς-term
- Let $o^{\prime}=[\arg =\varsigma(y) 5$, val $=\varsigma(x) x \cdot \arg]$
(o.arg $\leftarrow \varsigma(y) 5$).val $\quad \rightarrow$
$o^{\prime} \cdot \mathrm{val}=[\arg =\varsigma(\mathrm{y}) 5$, val $=\varsigma(\mathrm{x}) \mathrm{x} \cdot \mathrm{arg}] \cdot \mathrm{val} \rightarrow$
$\mathrm{x} . \arg \left[\mathrm{o}^{\prime} / \mathrm{x}\right]=0$ '. \arg
\rightarrow
$5\left[o^{\prime} / y\right]=5$

Encoding Classes

- A class is just an object with a "new" method, for generating new objects
- A repository of code for the methods of the generated objects (so that generated objects do not carry the methods with them)
- Example: for generating $o=\left[m_{i}=\varsigma(x) b_{i}\right]$

$$
\begin{gathered}
c=\left[\text { new }=\varsigma(z)\left[m_{i}=\varsigma(x) z . m_{i} x\right],\right. \\
\left.m_{i}=\varsigma(\text { self }) \lambda x . b_{i}\right]
\end{gathered}
$$

- The object can also carry "updateable" methods
- Note that the m_{i} in c are fields (don't use self)

Class Encoding Example

- A class of bit cells

BitClass $=[$ new $=\varsigma(z) .[$ val $=\varsigma(x) 0$, set $=\varsigma(x)$ z. set x, reset $=\varsigma(x)$ z.reset $x]$, set $=\varsigma(z) \lambda x . x . v a l ~ \leftarrow \varsigma(y) 1$, reset $=\varsigma(z) \lambda x . x \cdot v a l \leftarrow \varsigma(y) 0$]

- Example:

BitClass.new \rightarrow [val $=\varsigma(x) 0$,
set $=\varsigma(x)$ BitClass.set x,
reset $=\varsigma(x)$ BitClass.reset $x]$

- The new object carries with it its identity
- The indirection through BitClass expresses the dynamic dispatch through the BitClass method table

Inheritance and Subclassing

- Inheritance involves re-using method bodies FlipBitClass =
[new $=\varsigma(z)$ (BitClass.new).flip $\leftarrow \varsigma(x)$ z.flip x, flip $=\varsigma(z) \lambda x . x . v a l \leftarrow \operatorname{not}(x . v a l)]$
- Example:

FlipBitClass.new \rightarrow [val $=\varsigma(x) 0$,
set $=\varsigma(x)$ BitClass.set x, reset $=\varsigma(x)$ BitClass. reset x, flip $=\varsigma(x)$ FlipBitClass.flip x]

- We can model method overriding in a similar way

Object Types

- The previous calculus was untyped
- Can write invocations of nonexistent methods
[foo $=\varsigma(x)$...].bogus
- We want a type system that guarantees that welltyped expressions only invoke existing methods
- First attempt:
- An object's type specifies the methods it has available: $A::=\left[m_{1}, m_{2}, \ldots, m_{n}\right]$
- Not good enough:

If $\mathrm{o}:[\mathrm{m}, \ldots$...] then we still don't know if o.m.m is safe - We also need the type of the result of a method

First-Order Object Types. Subtyping

- Second attempt:

$$
A::=\left[m_{i}: A_{i}\right]
$$

- Specify the available methods and their result types
- Wherever an object is usable another with more methods should also be usable
- This can be expressed using (width) subtyping:

$$
\overline{A<A} \quad \frac{A<B \quad B<C}{A<C}
$$

$\begin{aligned} & n \geq k \\ & {\left[m_{1}: A_{1}, \ldots, m_{n}: A_{n}\right]<\left[m_{1}: A_{1}, \ldots, m_{k}: A_{k}\right] }\end{aligned}$

Typing Rules

Type System Results

- Theorem (Minimum types)
- If $\Gamma \vdash \mathrm{a}$: A then there exists B such that for any A^{\prime} such that $\Gamma \vdash a$: A^{\prime} we have $B<A^{\prime}$
- If an expression has a type A then it has a minimum (most precise) type B
- Theorem (Subject reduction)
- If $\varnothing \vdash \mathrm{a}: \mathrm{A}$ and $\mathrm{a} \rightarrow \mathrm{v}$ then $\varnothing \vdash \mathrm{v}: \mathrm{A}$
- Type preservation. Evaluating a well-typed expression yields a value of the same type.

Unsoundness of Covariance

- Object types are invariant (not co/contravariant)
- Example of covariance being unsafe:
- Let $\mathrm{U}=[]$ and $\mathrm{L}=[\mathrm{m}: \mathrm{U}]$
- By our rules $L<U$
- Let $\mathrm{P}=[\mathrm{x}: \mathrm{U}, \mathrm{f}: \mathrm{U}]$ and $\mathrm{Q}=[\mathrm{x}: \mathrm{L}, \mathrm{f}: \mathrm{U}]$
- Assume we (mistakenly) say that $\mathrm{Q}<\mathrm{P}$ (hoping for covariance in the type of x)
- Consider the expression:

$$
\mathrm{q}: \mathrm{Q}=[\mathrm{x}=[\mathrm{m}=[]], \mathrm{f}=\varsigma(\mathrm{s}: \mathrm{Q}) \text { s.x.m }]
$$

- Then $\mathrm{q}: \mathrm{P}$ (by subsumption with $\mathrm{Q}<\mathrm{P}$)
- Hence $q . x \leftarrow[]: P$
- This yields the object [$x=[], f=\varsigma(s: Q)$ s.x.m]
- Hence (q. $x \leftarrow[]$).f: U yet $(q . x \leftarrow[]) . f$ fails!

Type Examples

- Consider that old BitCell object
$o=[$ value $=\varsigma(x) .0$,
set $=\varsigma(x)$. x.value $\leftarrow \varsigma(y) .1$,
reset $=\varsigma(x)$. x.value $\leftarrow \varsigma(y) .0$]
- An appropriate type for it would be

BitType = [value : int, set: BitType, reset: BitType]

- Note that this is a recursive type
- Consider part of the derivation that o: BitType (for set)
$x:$ BitType value : int \in BitType $\quad x:$ BitType, $y:$ BitType $\vdash 1:$ int x : BitType $\vdash x$.value $\leftarrow \varsigma(y) 1$: BitType

Covariance Would Be Nice Though

- Recall the type of bit cells BitType = [value : int, set : BitType, reset: BitType]
- Consider the type of flipable bit cells

FlipBitType = [value : int, set : FlipBitType, reset :
FlipBitType, flip : FlipBitType]

- We would expect that FlipBitType < BitType
- Does not work because object types are invariant
- We need covariance + subtyping of recursive types - Several ways to fix this

Variance Annotations

- Covariance fails if the method can be updated
- If we never update set, reset or flip we could allow covariance
- We annotate each method in an object type with a variance:
+ means read-only. Method invocation but not update
- means write-only. Method update but not invocation 0 means read-write. Allows both update and invocation
- We must change the typing rules to check annotations
- And we can relax the subtyping rules

Subtyping with Variance Annotations

- Invariant subtyping (Read-Write)
$\left[\ldots m_{i}^{0}: B \ldots\right]<\left[\ldots m_{i}^{0}: B^{\prime} \ldots\right] \quad$ if $B=B^{\prime}$
- Covariant subtyping (Read-only)
$\left[\ldots m_{i}^{+}: B \ldots\right]<\left[\ldots m_{i}^{+}: B^{\prime} \ldots\right] \quad$ if $B<B^{\prime}$
- Contravariant subtyping (Write-only)
$\left[\ldots m_{i}^{\prime}: B \ldots\right]<\left[\ldots m_{i}{ }^{-}: B^{\prime} \ldots\right]$ if $B^{\prime}<B$
- In some languages these annotations are implicit
- e.g., only fields can be updated

Classes, Types and Variance

- Recall the type of bit cells

BitType $=\left[\right.$ value ${ }^{0}$: int, set ${ }^{+}$: BitType, reset ${ }^{+}$: BitType]

- Consider the type of flipable bit cells FlipBitType $=\left[\right.$ value ${ }^{0}$: int, set ${ }^{+}$: FlipBitType, reset ${ }^{+}$: FlipBitType, flip ${ }^{+}$: FlipBitType]
- Now we have FlipBitType < BitType
- Recall the subtyping rule for recursive types

$$
\begin{gathered}
\text { FlipBitType }<\text { BitType } \\
\tau \stackrel{\vdots}{<} \sigma \\
\hline \text { FlipBitType. } \tau<\mu \text { BitType } . \sigma
\end{gathered}
$$

Classes and Types

- Let $A=\left[m_{i}: B_{i}\right]$ be an object type
- Let Class(A) be the type of classes for objects of type A

$$
\operatorname{Class}(A)=\left[\text { new }: A, m_{i}: A \rightarrow B_{i}\right]
$$

A class has a generator and the body for the methods

- Types are distinct from classes
- A class is a "stamp" for creating objects
- Many classes can create objects of the same type
- Some languages take the view that two objects have the same type only if they are created from the same class - With this restriction, types are classes
- In Java both classes and interfaces act as types

Higher-Order Object Types

- We can define bounded polymorphism
- Exmaple: we want to add a method to BitType that can copy the bit value of self to another object
lendVal $=\varsigma(z) \lambda x: t<$ BitType. $x . v a l ~ \leftarrow z . v a l$
- Can be applied to a BitType or a subtype lendVal : $\forall \mathrm{t}$ < BitType. $\mathrm{t} \rightarrow \mathrm{t}$
- Returns something of the same type as the input
- Can infer that "z.lendVal y : FlipBitType" if "y : FlipBitType"
- We can add bounded existential types
- Ex: abstract type with interface "make" and "and"

Bits $=\exists \mathrm{t}<$ BitType. \{make : nat $\rightarrow \mathrm{t}$, and : $\mathrm{t} \rightarrow \mathrm{t} \rightarrow \mathrm{t}$ \}

- We only know the representation type t < BitType

Conclusions

- Object calculi are both simple and expressive
- Simple: just method update and method invocation
- Functions vs. objects
- Functions can be translated into objects
- Objects can also be translated into functions
- But we need sophisticated type systems
- A complicated translation
- Classes vs. objects
- Class-based features can be encoded with objects: subclassing, inheritance, overriding

Homework

- Good luck with your project presentations!
- Have a lovely summer.

