
#1

Cooperative Bug IsolationCooperative Bug Isolation

Ben Liblit Ben Liblit et al.et al.



#2

What’s This?

• I decided that that sigma calculus for objects 
was “too heavy” for our final lecture. 

• OO slides are available on the webpage.
• Instead, we’ll talk about the work that won 

the 2005 ACM Doctoral Dissertation Award.



#3

Sic Transit Gloria Raymondi
• Bugs experienced by users matter. 

• We can use information from user runs of 
programs to find bugs. 

• Random sampling keeps the overhead of doing 
this low. 

• Large public deployments exist. 



#4

Today’s Goal: Measure Reality

• We measure bridges, airplanes, cars…
– Where is ight data recorder for software?

• Users are a vast, untapped resource
– 60 million XP licenses in first year; 2/second
– 1.9M Kazaa downloads per week in 2004; 3/s
– Users know what matters most

• Nay, users define what matters most!

• Opportunity for reality-directed debugging
– Implicit bug triage for an imperfect world



#5

Bug Isolation Architecture

Program
Source

Compiler

Sampler

Guesses

Shipping
Application

Prole
& /

ƒƒ

Statistical
Debugging

Top bugs with
likely causes

No annotation required; 
just pick what to 

instrument.



#6

Why Will This Work?

• Good News: Users can help!
• Important bugs happen often, to many users 

– User communities are big and growing fast
– User runs vastly exceed testing runs
– Users are networked

• We can do better, with help from users!
– cf. crash reporting (Microsoft, Netscape)
– Today: research efforts



#7

Let’s Use Randomness

• Problem: recording everything is too 
expensive!

• Idea: each user records 0.1% of everything
• Generic sparse sampling framework

– Adaptation of Arnold & Ryder

• Suite of instrumentations / analyses
– Sharing the cost of assertions
– Isolating deterministic bugs
– Isolating non-deterministic bugs

How do
profilers 

work?



#8

Sampling the Bernoulli Way

• Identify the points of interest
• Decide to examine or ignore each site…

– Randomly
– Independently
– Dynamically

Cannot use clock interrupt: no context
Cannot be periodic: unfair
Cannot toss coin at each site: too slow



#9

Anticipating the Next Sample

• Randomized global countdown

• Selected from geometric distribution
– Inter-arrival time for biased coin toss
– Stores: How many tails before next head?

• i.e., how many sampling points to skip before we 
write down the next piece of data? 

• Mean of distribution = expected sample rate



#10

Amortized Coin Tossing

• Each acyclic region:
– Finite number of paths
– Finite max number of 

instrumentation sites
– Shaded nodes represent 

instrumentation sites

1

2 1

1

1

2

3

4

X



#11

Amortized Coin Tossing

• Each acyclic region:
– Finite number of paths
– Finite max number of 

instrumentation sites 

• Clone each region
– “Fast” variant
– “Slow” sampling variant

• Choose at run time

>4?



#12

Optimizations 

• Cache global countdown in local variable
– Global  local at func entry & after each call
– Local  global at func exit & before each call

• Identify and ignore “weightless” functions
• Avoid cloning

– Instrumentation-free prefix or suffix
– Weightless or singleton regions

• Static branch prediction at region heads
• Partition sites among several binaries
• Many additional possibilities …



Q:  Cartoons  (657 / 842) 

•This 1991-1996 Nickelodeon 
cartoon featured the song 
"Happy Happy Joy Joy", a gilded 
yak, the catchphrase "what is it, 
man?" and a Slinky parody based 
on logs.  



Q:  Cartoons  (668 / 842) 

•Identify the speaker 
of and the next five 
words after "C is for 
Cookie".  



Q:  Music  (195 / 842) 

•Name any one of Simon 
and Garfunkel's rhyming 
Fifty Ways To Leave Your 
Lover.  



Q:  Movies  (380 / 842) 

•This over-the-top 1992 Baz 
Luhrmann romantic comedy 
mockumentary features 
Australians Scott and Fran 
competing in the "Pan-Pacific 
Grand Prix" .  



#17

Sharing the Cost of Assertions

• Now we know how to sample things. 
• Does this work in practice? 

– Let’s do a series of experiments. 
• First: microbenchmark for sampling costs!

• What to sample: assert() statements

• Identify (for debugging) assertions that
– Sometimes fail on bad runs
– But always succeed on good runs



#18

Case Study: CCured Safety Checks

• Assertion-dense C code
• Worst-case scenario for us

– Each assertion extremely fast

• No bugs here; purely performance study
– Unconditional: 55% average overhead

– 1/100 sampling: 17% average overhead

– 1/1000 sampling: 10% average; half below 5%



#19

Isolating a Deterministic Bug

• Guess predicates on scalar function returns
(f() < 0)    (f() == 0)    (f() > 0)

• Count how often each predicate holds
– Client-side reduction into counter triples

• Identify differences in good versus bad runs
– Predicates observed true on some bad runs
– Predicates never observed true on any good run

Function return 
triples aren’t the 

only things we can 
sample.



#20

Case Study: ccrypt Crashing Bug

• 570 call sites
• 3 × 570 = 1710 counters
• Simulate large user community

– 2990 randomized runs; 88 crashes

• Sampling density 1/1000

– Less than 4% performance overhead

• Recall goal: sampled predicates should make 
it easier to debug the code …



#21

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Number of successful trials used

N
um

be
r o

f "
go

od
" f

ea
tu

re
s 

le
ft

Winnowing Down to the Culprits

• 1710 counters
• 1569 are always zero

– 141 remain

• 139 are nonzero on 
some successful run

• Not much left!
file_exists() > 0
xreadline() == 0

How do these pin 
down the bug? You’ll 

see in a second.



#22

Isolating a Non-Deterministic Bug

• Guess: at each direct scalar assignment
x = …

• For each same-typed in-scope variable y

• Guess predicates on x and y
(x < y)    (x == y)    (x > y)

• Count how often each predicate holds
– Client-side reduction into counter triples



#23

Case Study: bc Crashing Bug

• Hunt for intermittent crash in bc-1.06
– Stack traces suggest heap corruption

• 2729 runs with 9MB random inputs
• 30,150 predicates on 8910 lines of code
• Sampling key to performance

– 13% overhead without sampling

– 0.5% overhead with 1/1000 sampling



#24

Statistical Debugging via Regularized 
Logistic Regression

• S-shaped cousin to linear regression
• Predict success/failure as function of counters
• Penalty factor forces most coefficients to zero

– Large coefficient ⇒ highly predictive of failure

count

failure = 1

success = 0



#25

Top-Ranked Predictors

void more_arrays ()
{
  …

  /* Copy the old arrays. */
  for (indx = 1; indx < old_count; indx++)
    arrays[indx] = old_ary[indx];

  /* Initialize the new elements. */
  for (; indx < v_count; indx++)
    arrays[indx] = NULL;

  …
}

#1: indx > scale#1: indx > scale
#2: indx > use_math



#26

Top-Ranked Predictors

void more_arrays ()
{
  …

  /* Copy the old arrays. */
  for (indx = 1; indx < old_count; indx++)
    arrays[indx] = old_ary[indx];

  /* Initialize the new elements. */
  for (; indx < v_count; indx++)
    arrays[indx] = NULL;

  …
}

#1: indx > scale#1: indx > scale
#2: indx > use_math
#1: indx > scale
#2: indx > use_math
#3: indx > opterr
#4: indx > next_func
#5: indx > i_base



#27

Bug Found: Buffer Overrun

void more_arrays ()
{
  …

  /* Copy the old arrays. */
  for (indx = 1; indx < old_count; indx++)
    arrays[indx] = old_ary[indx];

  /* Initialize the new elements. */
  for (; indx < v_count; indx++)
    arrays[indx] = NULL;

  …
}



#28

Moving To The Real World

• Pick instrumentation scheme
• Automatic tool instruments program
• Sampling yields low overhead
• Many users run program
• Many reports ) find bug

• So let’s do it!



#29

Multithreaded Programs

• Global next-sample countdown
– High contention, small footprint
– Want to use registers for performance
⇒Thread-local: one countdown per thread

• Global predicate counters
– Low contention, large footprint
⇒Optimistic atomic increment



#30

Multi-Module Programs

• Forget about global static analysis
– Plug-ins, shared libraries
– Instrumented & uninstrumented code

• Self-management at compile time
– Locally derive identifying object signature
– Embed static site information within object le

• Self-management at run time
– Report feedback state on normal object unload
– Signal handlers walk global object registry



#31

Native Compiler Integration
• Instrumentor must mimic native compiler

– You don’t have time to port & annotate by hand

• This approach: source-to-source, then native

• Hooks for GCC:
– Stage wrapping via scripts

– Flag management via specles

Program
Source Compiler

Sampler

Guesses

Shipping
Application



#32

Keeping the User In Control



#33

Public Deployment 2004

0

200

400

600

800

1000

1200

1400

Evo
lutio

n
Gaim

GIM
P

Gnumer
ic

Nau
til

us

Rhyth
mbox

R
ep

or
ts

 R
ec

ei
ve

d

Good
Error
Crash



#34

Public Deployment 2004

0%

20%

40%

60%

80%

100%

Evo
lutio

n
Gaim

GIM
P

Gnumer
ic

Nau
til

us

Rhyth
mbox

Good
Error
Crash



#35

Sneak Peak: Data Exploration



#36

Summary: Putting it All Together

• Flexible, fair, low overhead sampling
• Predicates probe program behavior

– Client-side reduction to counters
– Most guesses are uninteresting or meaningless

• Seek behaviors that co-vary with outcome
– Deterministic failures: process of elimination
– Non-deterministic failures: statistical modeling



#37

Conclusions
• Bug triage that directly reflects reality

– Learn the most, most quickly, about the bugs that 
happen most often

• Variability is a benefit rather than a problem
– Results grow stronger over time

• Find bugs while you sleep!
• Public deployment is challenging

– Real world code pushes tools to their limits
– Large user communities take time to build

• But the results are worth it:
“Thanks to Ben Liblit and the Cooperative

Bug Isolation Project, this version of
Rhythmbox should be the most stable yet.”



#38

Homework

• Project writeups due today ...
• Good luck with your project presentations!


