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One-Slide Summary
• Exceptions are like non-local gotos; they 

are used to propagate errors. We will use 
contextual semantics to model them.

• Continuations allow you to take a 
snapshot of the current execution and 
store it for later use. They are often used 
for threads or backtracking. We will use 
contextual semantics to model them.

• Recursive types describe recursive data 
structures. F1 with them, F1

µ, is as 
powerful as the untyped lambda calculus.
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Exceptions
• A mechanism that allows non-local control flow

– Useful for implementing the propagation of errors to 
caller

• Exceptions ensure* that errors are not ignored
– Compare with the manual error handling in C

• Languages with exceptions:
– C++, ML, Modula-3, Java, C#, …

• We assume that there is a special type exn of 
exceptions
– exn could be int to model error codes
– In Java or C++, exn is a special object types * Supposedly.
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Modeling Exceptions
• Syntax

          e ::= ... | raise e | try e1 handle x ) e2 
          τ ::= ... | exn

• We ignore here how exception values are created
– In examples we will use integers as exception values

• The handler binds x in e2 to the actual exception 
value

• The “raise” expression never returns to the 
immediately enclosing context
– 1 + raise 2 is well-typed
– if (raise 2) then 1 else 2 is also well-typed
– (raise 2) 5 is also well-typed
– What should be the type of raise? 
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Example with Exceptions

• A (strange) factorial function
            let f = λx:int.λres:int. if x = 0 then 
                                                     raise res 
                                              else 
                                                    f (x - 1) (res * x)
            in  try f 5 1 handle x ) x

• The function returns in one step from the 
recursion

• The top-level handler catches the exception 
and turns it into a regular result   
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Typing Exceptions
• New typing rules

• A raise expression has an arbitrary type
• This is a clear sign that the expression does not return to its 

evaluation context

• The type of the body of try and of the handler must 
match
• Just like for conditionals
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Dynamics of Exceptions

• The result of evaluation can be an uncaught 
exception
– Evaluation answers:    a ::= v | uncaught v
– “uncaught v” has an arbitrary type

• Raising an exception has global effects
• It is convenient to use contextual semantics

– Exceptions propagate through some contexts but 
not through others

– We distinguish the handling contexts that 
intercept exceptions (this will be new)
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Contexts for Exceptions
• Contexts

– H :: = ² | H e | v H | raise H | try H handle x ) e

• Propagating contexts
– Contexts that propagate exceptions to their own 

enclosing contexts
– P ::= ² | P e | v P | raise P

• (New) Decomposition theorem
– If e is not a value and e is well-typed then it can be 

decomposed in exactly one of the following ways:
• H[(λx:τ. e) v] (normal lambda calculus)
• H[try v handle x ) e] (handle it or not)
• H[try P[raise v] handle x ) e] (propagate!)
• P[raise v] (uncaught exception)
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Contextual Semantics for 
Exceptions

• Small-step reduction rules
    H[(λx:τ. e) v]                       ! H[[v/x] e]
    H[try v handle x ) e]         ! H[v]
    H[try P[raise v] handle x ) e] ! H[[v/x] e]
    P[raise v]                            ! uncaught v

• The handler is ignored if the body of try 
completes normally

• A raised exception propagates (in one step) to 
the closest enclosing handler or to the top of 
the program
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Exceptional Commentary

• The addition of exceptions preserves type 
soundness

• Exceptions are like non-local goto
• However, they cannot be used to implement 

recursion
– Thus we still cannot write (well-typed) non-

terminating programs

• There are a number of ways to implement 
exceptions (e.g., “zero-cost” exceptions)
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Continuations
• Some languages have a mechanism for taking a snapshot of 

the execution and storing it for later use
– Later the execution can be reinstated from the snapshot
– Useful for implementing threads, for example
– Examples: Scheme, LISP, ML, C (yes, really!)

• Consider the expression: e1 + e2 in a context C
– How to express a snapshot of the execution right after evaluating e1 

but before evaluating e2 and the rest of C ?

– Idea: as a context C1 = C [ ² + e2 ]

• Alternatively, as λx
1
. C [ x

1
  + e

2
 ]

– When we finish evaluating e1 to v
1
, we fill the context and continue 

with C[v
1
 + e

2
] 

– But the C1 continuation is still available and we can continue several 
times, with different replacements for e1
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Continuation Uses in “Real Life”
• You’re walking and come to a fork in the road
• You save a continuation “right” for going right
• But you go left (with the “right” continuation in hand)
• You encounter Bender. Bender coerces you into joining his 

computer dating service. 
• You save a continuation “bad-date” for going on the date.
• You decide to invoke the 
    “right” continuation
• So, you go right (no evil date 
    obligation, but with the “bad-
    date” continuation in hand)
• A train hits you! 
• On your last breath, you invoke 
    the “bad-date” continuation
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Continuations
• Syntax: 

            e ::= callcc k in e  | throw e1 e2

            τ ::= … | τ cont

• τ cont - the type of a continuation that expects a τ 
• callcc k in e - sets k to the current context of the 

execution and then evaluates expression e
– when e terminates, the whole callcc terminates
– e can invoke the saved continuation (many times even)
– when e invokes k it is as if “callcc k in e” returns
– k is bound in e

• throw e1 e2 - evaluates e1 to a continuation, e2 to a 
value and invokes the continuation with the value of 
e2     (just wait, we’ll explain it!)
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Example with Continuations
• Example: another strange factorial
 callcc k in 
    let f = λx:int.λres:int. if x = 0 then throw k res 
                                         else f (x - 1) (x * res)
    in f 5 1
• First we save the current context

– This is the top-level context
– A throw to k of value v means “pretend the whole callcc 

evaluates to v”
• This simulates exceptions
• Continuations are strictly more powerful that 

exceptions 
– The destination is not tied to the call stack



Q:  Movies  (364 / 842) 

•According to Vizzini in the movie 
The Princess Bride, what are 
two classic blunders?  



Q:  Books  (702 / 842) 

•This 1953 dystopian novel by Ray 
Bradbury has censorship as a 
major theme. The main 
character, Guy Montag, is a 
fireman.  



Q:  Advertising  (812 / 842) 

•This corporation has 
manufactured Oreo cookies 
since 1912. Originally, Oreos 
were mound-shaped; hence the 
name "oreo" (Greek for "hill").  



Logic in Prose
148. Except living with others our whole life, we are 

both alone, solitary.

211. It was an uncomfortable silence. It was as if they 
were both as ease with each other.

270. He probably does know me but he where's a 
mask, so illogically he could be a number of people 
that I know.

426. Though her grades proved otherwise, Maeby 
wasn't an idiot.

313. Hermione Granger was head girl, and to 
everyone's surprise, so was Draco Malfoy.
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Static Semantics of Continuations

• Note that the result of callcc is of type τ
“callcc k in e” returns in two possible situations

– e throws to k a value of type τ, or

– e terminates normally with a value of type τ

• Note that throw has any type τ’
– Since it never returns to its enclosing context
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Dynamic Semantics of 
Continuations

• Use contextual semantics (wow, again!)
– Contexts are now manipulated directly
– Contexts are values of type τ cont

• Contexts
    H ::= ² | H e | v H | throw H1 e2  | throw v1 H2

• Evaluation rules
– H[(λx.e) v] ! H[[v/x] e]
– H[callcc k in e] ! H[[H/k] e]
– H[throw H1 v2] ! H1[v2]

• callcc duplicates the current continuation
• Note that throw abandons its own context
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Implementing Coroutines with 
Continuations

• Example: 
let client = λk. let res = callcc k’ in throw k k’ in
                        print (fst res);
                        client (snd res)

– “client k” will invoke “k” to get an integer and a continuation for 
obtaining more integers (for now, assume the list & recursion work)

let getnext = 
     λL.λk. if L = nil then raise 999
               else getnext (cdr L) (callcc k’ in throw k  (car L, k’))

– “getnext L k” will send to “k” the first element of L along with a 
continuation that can be used to get more elements of L 

getnext [0;1;2;3;4;5] (callcc k in client k)
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Continuation Comments
• In our semantics the continuation saves the entire 

context: program counter, local variables, call 
stack, and the heap!

• In actual implementations the heap is not saved!
• Saving the stack is done with various tricks, but it is 

expensive in general
• Few languages implement continuations

– Because their presence complicates the whole compiler 
considerably

– Unless you use a continuation-passing-style of 
compilation (more on this next)
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Continuation Passing Style
• A style of compilation where evaluation of a 

function never returns directly: instead the function 
is given a continuation to invoke with its result. 

• Instead of  f(int a) { return h(g(e); } 

• we write f(int a, cont k) { g(e, λr. h(r, k) ) }

• Advantages:
– interesting compilation scheme (supports callcc easily)
– no need for a stack, can have multiple return addresses 

(e.g., for an error case)
– fast and safe (non-preemptive) multithreading
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Continuation Passing Style
• Let e ::= x | n | e1 + e2 | if e1 then e2 else e3

               | λx.e | e1 e2

• Define cps(e, k) as the code that computes e in CPS 
and passes the result to continuation k

          cps(x, k) = k x
          cps(n, k) = k n
          cps(e1 + e2, k) = 

cps(e1, λn1.cps(e2,λn2.k (n1 + n2)))
          cps(λx.e, k) = k (λxλk’. cps(e,k’))
          cps(e1 e2, k) = cps(e1, λf1.cps(e2,λv2. f1 v2 k))
• Example: cps (h(g(5)), k) = g(5, λx.h x k)

– Notice the order of evaluation being explicit
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Recursive Types: Lists
• We want to define recursive data structures 
• Example: lists

– A list of elements of type τ (a τ list) is either empty or it 
is a pair of a τ and a τ list

τ list = unit + (τ £ τ list)
– This is a recursive equation. We take its solution to be  

the smallest set of values L that satisfies the equation
L = { * } [ (T £ L)  

where T is the set of values of type τ

– Another interpretation is that the recursive equation is 
taken up-to (modulo) set isomorphism

Big 
Transition!
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Recursive Types
• We introduce a recursive type constructor µ (mu):

µt. τ 
– The type variable t is bound in τ
– This stands for the solution to the equation

t ' τ     (t is isomorphic with τ)
– Example: τ list = µt. (unit + τ £ t)
– This also allows “unnamed” recursive types

• We introduce syntactic (sugary) operations for the 
conversion between µt.τ and [µt.τ/t]τ 

• e.g. between “τ list” and “unit + (τ £ τ list)”
e ::= … | foldµt.τ e | unfoldµt.τ e 

     τ ::= … | t | µt.τ
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Example with Recursive Types
• Lists

 τ list = µt. (unit + τ £ t)
 nilτ = foldτ list (injl *)

 consτ = λx:τ.λL:τ list. foldτ list injr (x, L)

• A list length function
lengthτ = λL:τ list. 

case (unfoldτ list L) of   injl x ) 0

       | injr y ) 1 + lengthτ (snd y)

• (At home …) Verify that
– nilτ       : τ list

– consτ    : τ ! τ list ! τ list
– lengthτ : τ list ! int
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Type Rules for Recursive Types

• The typing rules are syntax directed
• Often, for syntactic simplicity, the fold and 

unfold operators are omitted
– This makes type checking somewhat harder
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Dynamics of Recursive Types
• We add a new form of values

v ::= … | foldµt.τ v

– The purpose of fold is to ensure that the value has 
the recursive type and not its unfolding

• The evaluation rules:

• The folding annotations are for type checking only
• They can be dropped after type checking
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Recursive Types in ML
• The language ML uses a simple syntactic trick to 

avoid having to write the explicit fold and unfold
• In ML recursive types are bundled with union types

type t = C1 of τ1 | C2 of τ2 | ... | Cn of τn                                          

                      (* t can appear in τ i *)
– e.g., “type intlist = Nil of unit | Cons of int * intlist”

• When the programmer writes Cons (5, l)
– the compiler treats it as              foldintlist (injr (5, l))

• When the programmer writes
– case e of Nil ) ... | Cons (h, t) ) ... 
the compiler treats it as
– case unfoldintlist e of Nil ) ... | Cons (h,t) ) ...
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Encoding Call-by-Value 
λ-calculus in F1

µ

• So far, F1 was so weak that we could not 
encode non-terminating computations
– Cannot encode recursion
– Cannot write the λx.x x   (self-application)

• The addition of recursive types makes typed 
λ-calculus as expressive as untyped λ-
calculus!

• We could show a conversion algorithm from 
call-by-value untyped λ-calculus to call-by-
value F1

µ
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Untyped Programming in F1
µ

• We write e for the conversion of the term e to F1
µ

– The type of e is V = µt. t ! t
• The conversion rules

x         = x
λx. e   = foldV (λx:V. e)
e 1  e 2   = (unfoldV e 1) e 2

• Verify that 
–  ¢ ` e : V
– e ⇓ v if and only if e ⇓ v

• We can express non-terminating computation
D = (unfoldV (foldV (λx:V. (unfoldV x) x))) (foldV (λx:V. (unfoldV x) x)))
or, equivalently
D = (λx:V. (unfoldV x) x) (foldV (λx:V. (unfoldV x) x)))
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Homework

• Read Goodenough article
– Optional, perspectives on exceptions

• Work on your projects!


